• Title/Summary/Keyword: Timing offset

Search Result 193, Processing Time 0.022 seconds

Effect Analysis of Timing Offsets for Asynchronous MC-CDMA Uplink Systems (비동기 MC-CDMA 상향 링크 시스템에서의 시간 옵셋 영향 분석)

  • Ko, Kyun-Byoung;Woo, Choong-Chae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.1-8
    • /
    • 2010
  • This paper models a symbol timing offset (STO) with respect to the guard period and the maximum access delay time for asynchronous multicarrier code division multiple access (MC-CDMA) uplink systems over frequency-selective multipath fading channels. Analytical derivation shows that STO causes desired signal power degradation and generates self-interferences. This effect of the STO on the average bit error rate (BER) and the effective signal-to-noise ratio (SNR) is evaluated. The approximated BER and the SNR loss caused by STO are then obtained as closed-form expressions. The tightness between the analytical result and the simulated one is verified for the different STOs and SNRs. Furthermore, the derived analytical results are verified via Monte Carlo simulations.

Method of Clock Noise Generation Corresponding to Clock Specification

  • Lee, Young Kyu;Yang, Sung Hoon;Lee, Chang Bok;Kim, Sanhae;Song, Kyu-Ha;Lee, Wonjin;Ko, Jae Heon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.157-163
    • /
    • 2016
  • Clocks for time synchronization using radio signals such as global navigation satellite system (GNSS) may lose reference signals by intentional or unintentional jamming. This is called as holdover. When holdover occurs, a clock goes into free run in which synchronization performance is degraded considerably. In order to maintain the required precise time synchronization during holdover, accurate estimation on main parameters such as frequency offset and frequency drift is needed. It is necessary to implement an optimum filter through various simulation tests by creating clock noise in accordance with given specifications in order to estimate the main parameters accurately. In this paper, a method that creates clock noise in accordance with given specifications is described.

Signal Modulation Techniques and Performance Analysis for KPS Signal Design

  • Shin, Heon;Han, Kahee;Joo, Jung-Min;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.293-304
    • /
    • 2020
  • In this paper, various modulation techniques, including the legacy Global Navigation Satellite System (GNSS) signal modulation techniques, are introduced and the spectral characteristics and correlation characteristics of signals with various modulation techniques are analyzed based on numerical simulation. With the development of various GNSS services, the limited frequency band has become increasingly saturated, and issues of interoperability and compatibility have emerged in the new GNSS design. Since the efficient allocation of frequency resources is closely related to spectrum design, modulation techniques are one of the important signal design parameters of new signal design. Signal modulation techniques are closely related to various figure of merits (FoMs) as well as spectrum characteristic, and in some cases there is a complicated trade-off between FoMs. Thus, the FoMs associated with modulation technology should be analyzed and the best signal candidates should be chosen carefully via the trade-off analysis for FoMs. In this paper, we define the modulation technique based on Phase Shift Keying (PSK), Binary Offset Carrier (BOC) and Continuous Phase Modulation (CPM) for the design of KPS signals, and the FoMs of signals in terms of spectrum and correlation function are evaluated. Signals with various modulation techniques are implemented through a numerical simulation, and the relevant FoMs are analyzed.

GNSS Antenna PCO/PCV and Position Changes due to the Switch IGS08/igs08.atx to IGS14/igs14.atx

  • Choi, Byung-Kyu;Sohn, Dong-Hyo;Yoon, Ha-Su;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.83-89
    • /
    • 2022
  • For precise GNSS applications, the antenna phase center correction (PCC) is absolutely required. The PCC magnitude can reach the centimeter level with the antenna structure. In the present study, we first investigate the phase center offset (PCO) and phase center variation (PCO) of three different antenna models in two different reference frames, IGS08/igs08.atx and IGS14/igs14.atx. Clear L1 and L2 PCO differences were found between IGS08 and IGS14. In addition, the PCV showed characteristics that is dependent upon the signal direction (azimuth and elevation angle). The remarkable thing is that the changes of a Dorne Margolin choke-ring antenna model (AOAD/MT DOME) was very small in two reference frames. In order to analyze changes in positions according to different reference systems, GNSS data obtained from DAEJ, SUWN, and TSKB stations were processed by the precise point positioning (PPP) method. We suggest that an antenna PCO/PCV can affect the precise GNSS positioning on the order of several millimeters in two different reference frames.

Low Computational FFT-based Fine Acquisition Technique for BOC Signals

  • Kim, Jeong-Hoon;Kim, Binhee;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Fast Fourier transform (FFT)-based parallel acquisition techniques with reduced computational complexity have been widely used for the acquisition of binary phase shift keying (BPSK) global positioning system (GPS) signals. In this paper, we propose a low computational FFT-based fine acquisition technique, for binary offset carrier (BOC) modulated BPSK signals, that depending on the subcarrier-to-code chip rate ratio (SCR) selectively utilizes the computationally efficient frequency-domain realization of the BPSK-like technique and two-dimensional compressed correlator (BOC-TDCC) technique in the first stage in order to achieve a fast coarse acquisition and accomplishes a fine acquisition in the second stage. It is analyzed and demonstrated that the proposed technique requires much smaller mean fine acquisition computation (MFAC) than the conventional FFT-based BOC acquisition techniques. The proposed technique is one of the first techniques that achieves a fast FFT-based fine acquisition of BOC signals with a slight loss of detection probability. Therefore, the proposed technique is beneficial for the receivers to make a quick position fix when there are plenty of strong (i.e., line-of-sight) GNSS satellites to be searched.

Frame Synchronization Algorithm based on Differential Correlation for Burst OFDM System (Burst OFDM 시스템을 위한 차동 상관 기반의 프레임 동기 알고리즘)

  • Um Jung-Sun;Do Joo-Hyun;Kim Min-Gu;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.1017-1026
    • /
    • 2005
  • In burst OFDM system, the frame synchronization should be performed first for the acquisition of received frame and the estimation of the correct FFT-window position. The conventional frame synchronization algorithms using design features of the preamble symbol, the repetition pattern of the OFDM symbol by pilot sub-carrier allocation rule and Cyclic Prefix(CP), has difficulty in the detection of precise frame timing because its correlation characteristics would increase and decrease gradually. Also, the algorithm based on the correlation between the reference signal and the received signal has performance degradation due to frequency offset. Therefore, we adopt a differential correlation method that is robust to frequency offset and has the clear peak value at the correct frame timing for frame synchronization. However, performance improvement is essential for differential correlation methods, since it usually shows multiple peak values due to the repetition pattern. In this paper, we propose an enhanced frame synchronization algorithm based on the differential correlation method that shows a clear single peak value by using differential correlation between samples of identical repeating pattern. We also introduce a normalization scheme which normalizes the result of differential correlation with signal power to reduce the frame timing error in the high speed mobile channel environments.

DLL Design and Performance Evaluation in Indoor Wireless DS-CDMA System under the Multipath Fading Effects (실내 무선 DS-CDMA 방식에서 다중경로 페이딩 영향을 고려한 DLL 설계와 성능평가)

  • Im, Sung-Jun;Ryu, Ho-Jin;Ryu, Heung-Gyoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.99-105
    • /
    • 1997
  • This paper analyzes DLL(Delay lock loop) under the multipath fading effects. The evaluated performance measures include the steady-state timing error probability density function (PDF) and the mean-time-to-lose-lock (MTLL) under multipath fading effects. The discriminator characteristic S(${\epsilon}$) is shown to be zero at the point of timing error ${\epsilon}_{0}$ that is not zero, and the MTLL decreases as the delayed signal power $g_{2}$ and delayed time ${\tau}_{d}$ increase. We approximate the steady-state timing error PDF linearly with these variables and evaluate the steady-state timing error PDF and MTLL. The severe multipath fading effects result lower MTLL, in this case we make MTLL larger by increasing the early-late discriminator offset ${\Delta}$. First, we calculate the timing error point ${\epsilon}_{0}$, and present the performance of DLL under multipath fading. The timing error PDF, MTLL and the performance of DLL with ${\Delta}$ are also investigated. And we conclude that the larger ${\Delta}$ makes a higher MTLL and a better performance of DLL under multipath fading effects.

  • PDF

Effect of Synchronization Errors with Distributed Beamforming in OFDM Systems (분산 빔포밍을 이용한 OFDM 시스템에서의 동기에러 영향 분석)

  • Kim, Haesoo;Lee, Kwangho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.3-10
    • /
    • 2014
  • Three synchronization issues, i.e., symbol time, phase, and frequency, have to be properly controlled to achieve distributed beamforming gain. In this paper, the impacts of synchronization errors in distributed beamforming are analyzed for OFDM systems. For symbol timing error of cooperating signals, high frequency subcarriers are more susceptible as compared to low frequency ones. The desired signal loss due to phase and frequency offset is independent of subcarrier number. However, frequency offset is critical in OFDM systems since it leads to interference from the other subcarriers as well as power loss in the desired signal. Performance degradation due to three synchronization errors is shown with various numbers of cooperating signals and offset values. It shows that the performance analysis is well matched with simulation results.

Compensation of Timing Offset and Frequency Offset in the Multi-Band Receiver with Sub-Sampling Method (Sub-Sampling 방식의 다중 대역 수신기에서 타이밍 오프셋과 주파수 오프셋 보상)

  • Lee, Hui-Kyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.501-509
    • /
    • 2011
  • Software defined radio(SDR) has a goal that places the analog-to-digital converter(ADC) as near the antenna as possible. But current technique actually can't do analog-to-digital converting about RF band signals. So one method is studying that samples RF band signals to IF band. One of the ways Sub-Sampling technique can convert signals from RF band to IF band without oscillator. If Sub-Sampling technique is used, over 2 bands can convert signals from RF band to IF band. But due to the filter performance in RF band, it is possible to generate interference between signals that is converted in low frequency band. The effect degrades performance. In this paper, we propose one method that uses time division multiplexing(TDM) method as a solution to avoid interference between signals. By doing TDM and Sub-Sampling at the same time that method can get signals without large changes of structures.

A Novel Scheme for Code Tracking Bias Mitigation in Band-Limited Global Navigation Satellite Systems (위성 기반 측위 시스템에서의 부호 추적편이 완화 기법)

  • Yoo, Seung-Soo;Kim, Sang-Hun;Yoon, Seok-Ho;Song, Iich-Ho;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1032-1041
    • /
    • 2007
  • The global navigation satellite system (GNSS), which is the core technique for the location based service, adopts the direct sequence/spread spectrum (DS/SS) as its modulation method. The success of a DS/SS system depends on the synchronization between the received and locally generated pseudo noise (PN) signals. As a step in the synchronization process, the tacking scheme performs fine adjustment to bring the phase difference between the two PN signals to zero. The most widely used tracking scheme is the delay locked loop with early minus late discriminator (EL-DLL). In the ideal case, the EL-DLL is the best estimator among various DLL. However, in the band-limited multipath environment, the EL-DLL has tracking bias. In this paper, the timing offset range of correlation function is divided into advanced offset range (AOR) and delayed offset range (DOR) centering around the correct synchronization time point. The tracking bias results from the following two reasons: symmetry distortion between correlation values in AOR and DOR, and mismatch between the time point corresponding to the maximum correlation value and the synchronization time point. The former and latter are named as the type I and type II tracking bias, respectively. In this paper, when the receiver has finite bandwidth in the presence of multipath signals, it is shown that the type II tracking bias becomes a more dominant error factor than the type I tracking bias, and the correlation values in AOR are not almost changed. Exploiting these characteristics, we propose a novel tracking bias mitigation scheme and demonstrate that the tracking accuracy of the proposed scheme is higher than that of the conventional scheme, both in the presence and absence of noise.