• Title/Summary/Keyword: Timing Ability

Search Result 81, Processing Time 0.029 seconds

Preclinical study of a novel ingestible bleeding sensor for upper gastrointestinal bleeding

  • Kimberly F. Schuster;Christopher C. Thompson;Marvin Ryou
    • Clinical Endoscopy
    • /
    • v.57 no.1
    • /
    • pp.73-81
    • /
    • 2024
  • Background/Aims: Upper gastrointestinal bleeding (UGIB) is a life-threatening condition that necessitates early identification and intervention and is associated with substantial morbidity, mortality, and socioeconomic burden. However, several diagnostic challenges remain regarding risk stratification and the optimal timing of endoscopy. The PillSense System is a noninvasive device developed to detect blood in patients with UGIB in real time. This study aimed to assess the safety and performance characteristics of PillSense using a simulated bleeding model. Methods: A preclinical study was performed using an in vivo porcine model (14 animals). Fourteen PillSense capsules were endoscopically placed in the stomach and blood was injected into the stomach to simulate bleeding. The safety and sensitivity of blood detection and pill excretion were also investigated. Results: All the sensors successfully detected the presence or absence of blood. The minimum threshold was 9% blood concentration, with additional detection of increasing concentrations of up to 22.5% blood. All the sensors passed naturally through the gastrointestinal tract. Conclusions: This study demonstrated the ability of the PillSense System sensor to detect UGIB across a wide range of blood concentrations. This ingestible device detects UGIB in real time and has the potential to be an effective tool to supplement the current standard of care. These favorable results will be further investigated in future clinical studies.

A Study on the Standardization of Education Modules for ARPA/Radar Simulation (ARPA/레이더 시뮬레이션 교육 모듈의 표준화 연구)

  • Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.631-638
    • /
    • 2016
  • A mariner cadet gains the ability to identify and avoid potential collisions with other ships through ARPA/Radar simulation education. This research surveyed first domestic and overseas's rules (e.g., MOMAF's Standard, the STCW Convention, etc.) of the simulation education, upon investigation the only content and timing of this simulation-based education are specified according to these rules, and maritime education institutions issue the related certification autonomously after a student has taken the simulation because no simulation education module exists to further guide the ARPA/Radar simulation. As a result, it is difficult for students to acquire consistent maritime ability through ARPA/Radar simulation. This paper discusses standardization of these education modules to produce more consistent mariner ability, and verify the degree of improvement of education that would be achieved by enacting the proposed education module. The simulation education system used in maritime institutions in Korea was investigated, and scenarios reflecting traffic flow in actual waterways was proposed based on marine traffic surveys so teaching modules can educate/assess more effectively based on core marine abilities. Improvements in education and training were also verified using data collected over 2 years based on a standardized module. Each education institution can enact an effective, systematic education approach using standardized ARPA/Radar education modules proposed in this paper, and this can set a foundation to contribute to safer vessel navigation by improving maritime abilities.

A Remote Trace Debugger for Multi-Task Programs in Qplus-T Embedded Internet System (Qplus-T내장형 인터넷 시스템에서 멀티 태스크 프로그램을 위한 원격 트레이스 디버거)

  • 이광용;김흥남
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.2
    • /
    • pp.166-181
    • /
    • 2003
  • With the rapid growth of Internet, many devices such as Web TVs, PDAs and Web phones, begin to be directly connected to the Internet. These devices need real-time operating systems (RTOS) to support complex real-time applications running on them. Development of such real-time applications called embedded internet applications, is difficult due to the lack of adequate tools, especially debuggers. In this paper we present a new tracepoint debugging tool for the Qplus-T RTOS embedded system, which facilitates the instrumentations of the real-time software applications with timing trace-points. Compared with traditional breakpoint debugger, this trace-point debugger provides the ability to dynamically collect and record application data for on-line examination and for further off-line analysis. And, the trace-points can also provide the means for assigning new values to the running application's variables, without neither halting its execution nor interfering with its natural execution flow. Our trace-point debugger provides a highly efficient method for adding numerous monitoring trace-points within a real time target application such as Qplus-T internet applications, utilizing these trace-points to monitor and to analyze the application's behavior while it is running. And also, our trace debugger is different from previous one in that we can specify and detect the timing violations using its RTL (Real-Time Logic) trace experiments.

Gated Conductivity Imaging using KHU Mark2 EIT System with Nano-web Fabric Electrode Interface (나노웹 섬유형 전극 인터페이스와 KHU Mark2 EIT 시스템을 이용한 생체신호 동기 도전율 영상법)

  • Kim, Tae-Eui;Kim, Hyun-Ji;Wi, Hun;Oh, Tong-In;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • Electrical impedance tomography(EIT) can produce functional images with conductivity distributions associated with physiological events such as cardiac and respiratory cycles. EIT has been proposed as a clinical imaging tool for the detection of stroke and breast cancer, pulmonary function monitoring, cardiac imaging and other clinical applications. However EIT still suffers from technical challenges such as the electrode interface, hardware limitations, lack of animal or human trials, and interpretation of conductivity variations in reconstructed images. We improved the KHU Mark2 EIT system by introducing an EIT electrode interface consisting of nano-web fabric electrodes and by adding a synchronized biosignal measurement system for gated conductivity imaging. ECG and respiration signals are collected to analyze the relationship between the changes in conductivity images and cardiac activity or respiration. The biosignal measurement system provides a trigger to the EIT system to commence imaging and the EIT system produces an output trigger. This EIT acquisition time trigger signal will also allow us to operate the EIT system synchronously with other clinical devices. This type of biosignal gated conductivity imaging enables capture of fast cardiac events and may also improve images and the signal-to-noise ratio (SNR) by using signal averaging methods at the same point in cardiac or respiration cycles. As an example we monitored the beat by beat cardiac-related change of conductivity in the EIT images obtained at a common state over multiple respiration cycles. We showed that the gated conductivity imaging method reveals cardiac perfusion changes in the heart region of the EIT images on a canine animal model. These changes appear to have the expected timing relationship to the ECG and ventilator settings that were used to control respiration. As EIT is radiation free and displays high timing resolution its ability to reveal perfusion changes may be of use in intensive care units for continuous monitoring of cardiopulmonary function.

Location error analysis of a real time locating system in a multipath environment (다중경로 환경에서 실시간 위치추적 시스템의 위치 오차 분석)

  • Myong, Seung-Il;Mo, Sang-Hyun;Lee, Heyung-Sub;Park, Hyung-Rae;Seo, Dong-Sun
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • In this paper, we analyze the location accuracy of real-time locating systems (RTLS) in multipath environments, where the RTLS complies with an ISO/IEC 24730-2 international standard. RTLS readers should have an ability not only to recover the transmitted signal but also provide arrival timing information from the received signal. In the multipath environments, in general, the transmitted signal goes through both direct and indirect paths, and then it becomes some distorted form of the transmitted signal. Such multipath components have a critical effect on deciding the first arrival timing of the received signal. To analyze the location error of the RTLS in the multipath environments, we assume two multipath components without considering an additive white Gaussian noise. Through the simulation and real test results, we confirm that the location error does not occur when the time difference between two paths is more than 1.125Tc, but the location error of about 2.4m happens in case of less than 0.5Tc. In particular, we see that the resolvability of two different paths depends largely on the phase difference for the time difference of less than 1Tc.

Development of a Tool for Predicting the Occurrence Time of BLEVE in Small LPG Storage Tanks (LPG소형저장탱크 BLEVE 발생 시점 예측 툴 개발)

  • Chae, Chung Keun;Lee, Jae Hun;Chae, Seung Been;Kim, Yong Gyu;Han, Shin Tak
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.74-83
    • /
    • 2020
  • In Korea, about 110,000 LPG small storage tanks of less than three tons have been installed in restaurants, houses and factories, and are used as LPG supply facilities for cooking, heating and industrial use. In the case of combustible liquefied gas storage tanks, the tank may rupture due to the temperature increase of the tank steel plate (approximately 600℃) even when the safety valve is operating normally, causing large-scale damage in an instant. Therefore, in the event of a fire near the LPG small storage tank, it is necessary to accurately predict the timing of the BLEVE(Boiling Liquid Expanding Vapour Explosion) outbreak in order to secure golden time for lifesaving and safely carry out fire extinguishing activities. In this study, we have first investigated the results of a prior study on the prediction of the occurrence of BLEVE in the horizontal tanks. And we have developed thermodynamic models and simulation program on the prediction of BLEVE that can be applied to vertical tanks used in Korea, have studied the effects of the safety valve's ability to vent, heat flux strength of external fires, size of tanks, and gas remaining in tanks on the time of BLEVE occurrence and have suggested future utilization measures.

Characteristics of the Fatigue Index in EMG Power Spectrum Analysis During Isokinetic Exercise (등속성 운동 시 근전도 주파수 분석에서 얻은 피로지수의 특성)

  • Won, Jong-Im;Cho, Sang-Hyun;Yi, Chung-Hwi;Kwon, Oh-Youn;Lee, Young-Hee;Park, Jung-Mi
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.11-26
    • /
    • 2001
  • In rehabilitation programs involving muscle re-education and endurance exercise, it is necessary to confirm when fatigue occurs. It is also necessary to quantify fatigue, to confirm whether the muscle has been exercised sufficiently. In general, as fatigue occurs, the force-generating ability of the muscle is reduced. If the median frequency (MDF) obtained from electromyogram (EMG) power spectrum is correlated highly with work, then the timing and degree of fatigue may be confirmed. This study examined the relationship between work and MDF obtained from the EMG power spectrum during repetitive isokinetic exercise. Surface EMG signals were collected from biceps brachii and vastus lateralis of 52 normal subjects (26 males, 26 females) at $120^{\circ}/sec$ and $60^{\circ}/sec$ while performing an isokinetic exercise. The exercise was finished at 25% of peak work. MDF data was obtained using a moving fast Fourier transformation (FFT), and random noise was removed using the inverse FFT, then a new MDF data was obtained from the main signal. There was a high correlation between work and MDF during repetitiv isokinetic exercise in the biceps brachii and vastus lateralis of males and the biceps brachii of females (r=.50~.77). However, there was a low correlation between work and MDF in the vastus lateralis of females (r=.06~.19).

  • PDF

Optimization of Culture Conditions for the Bioconversion of Vitamin $D_3\;to\;1{\alpha}$,25-Dihydroxyvitamin $D_3$ Using Pseudonocardia autotrophica ID9302

  • Kang, Dae-Jung;Lee, Hong-Sub;Park, Joon-Tae;Bang, Ji-Sun;Hong, Soon-Kwang;Kim, Tae-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.408-413
    • /
    • 2006
  • We assessed the ability of a Pseudonocardia sp. from soil samples to bioconvert vitamin $D_3$. The optimal culture conditions for the bioconversion of vitamin $D_3$ to active $1{\alpha}$,25-dihydroxyvitamin $D_3$ were investigated by varying the carbon and nitrogen sources, the metal salt concentrations, the initial pH, and the temperature. Microbial transformations were carried out with the addition of vitamin $D_3$ dissolved in ethanol. They were sampled by extraction with methanol-dichloromethane and the samples were examined by HPLC. Optimum culture conditions were found to be 0.4% yeast extract, 1% glucose, 3% starch, 1% fish meal, 0.2% NaCl, 0.01% $K_2HPO_4$, 0.2% $CaCO_3$, 0.01% NaF, and pH 7.0 at $28^{\circ}C$. The optimal timing of the addition of vitamin $D_3$ for the production of calcitriol by Pseudonocardia autotrophica ID9302 was concurrent with the inoculation of seed culture broth. Maximum calcitriol productivity and the yield of bioconversion reached a value of 10.4mg/L and 10.4% respectively on the 7th day in a 75L fementer jar under the above conditions.

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.

Comparison of Motion Sensor Systems for Gait Phase Detection (보행주기 검출용 모션 센서 시스템의 비교)

  • Park, Sun-Woo;Sohn, Ryang-Hee;Ryu, Ki-Hong;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • Gait phase detection is important for evaluating the recovery of gait ability in patients with paralysis, and for determining the stimulation timing in FES walking. In this study, three different motion sensors(tilt sensor, gyrosensor and accelerometer) were used to detect gait events(heel strike, HS; toe off, TO) and they were compared one another to determine the most applicable sensor for gait phase detection. Motion sensors were attached on the shank and heel of subjects. Gait phases determined by the characteristics of each sensor's signal were compared with those from FVA. Gait phase detections using three different motion sensors were valid, since they all have reliabilities more than 95%, when compared with FVA. HS and TO were determined by both FVA and motion sensor signals, and the accuracy of detecting HS and TO with motion sensors were assessed by the time differences between FVA and motion sensors. Results show of that the tilt sensor and the gyrosensor could detect gait phase more accurately in normal subjects. Vertical acceleration from the accelerometer could detect HS most accurately in hemiplegic patient group A. The gyrosensor could detect HS and TO most accurately in hemiplegic patient group A and B. Valid error ranges of HS and TO were determined by 3.9 % and 13.6 % in normal subjects, respectively. The detection of TO from all sensor signals was valid in both patient group A and B. However, the vertical acceleration detected HS validly in patient group A and the gyrosensor detected HS validly in patient group B. We could determine the most applicable motion sensors to detect gait phases in hemiplegic patients. However, since hemiplegic patients have much different gait patterns one another, further experimental studies using various simple motion sensors would be required to determine gait events in pathologic gaits.