• Title/Summary/Keyword: Time-varying parameter

Search Result 373, Processing Time 0.027 seconds

Passive Telemetry Capacitive Humidity Sensor System using RLSE Algorithm (RLSE알고리즘을 이용한 원격 정전용량형 습도 센서 시스템)

  • Kyung-Yup Kim;Joon-Tark Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.569-576
    • /
    • 2004
  • In this paper, passive telemetry capacitive humidity sensor system using a RLSE(Recursive Least Square Estimation) technique is proposed. To overcome the problem like power limits and complications that general passive telemetry sensor system including IC chip has, the principle of inductive coupling is applied to model the sensor system. Specially. by applying the forgetting factor we show that the accuracy of its estimation can be improved even in the case of time varying parameter and also the convergence time can be reduced.

Input-Output Feedback Linearizing Control With Parameter Estimation Based On A Reduced Design Model

  • Noh, Kap-Kyun;Dongil Shin;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.87.2-87
    • /
    • 2001
  • By the state transformation including independent outputs functions, a nonlinear process model can be decomposed into two subsystems; the one(design model) is described in output variables as new states and used for control system synthesis and the other(disturbance model) is described in the original unavailable states and its couplings with the design model are treated as uncertain time-varying parameters in the design model. Its existence with respect to the design model is ignored. So, the design model is an uncertain time-variant system. Control synthesis based on a reduced design model is a combined ...

  • PDF

New Approach of Time-varying Switching Hyperplane in Multivariable Variable Structure Control Systems (다변수 가변구조 제어 시스템에서 시변 스위칭 초평면의 새로운 시도)

  • Lee, Ju-Jang;Kim, Jong-Jun;Kim, Eun-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.402-406
    • /
    • 1990
  • A new approach of a time-varying switching hyperplane based on the theory of variable structure system (VSS) is proposed for the control of multivariable systems. While the conventional switching surface can net achieve the robust performance against parameter variations and disturbances before the sliding mode occurs, the proposed switching hyperplane, which is obtained from the eigen-structure assignment theory powerfully used in the linear multivariable systems, ensures the sliding mode from the initial state. And new continuous control input which guarantees the sliding mode is proposed. This new control input does not arise chattering problem which arises with the conventional control input of variable structure control systems. Through numerical examples, the expellant performances of the proposed controller are verified.

  • PDF

Time-Varying Comovement of KOSPI 200 Sector Indices Returns

  • Kim, Woohwan
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.335-347
    • /
    • 2014
  • This paper employs dynamic conditional correlation (DCC) model to examine time-varying comovement in the Korean stock market with a focus on the financial industry. Analyzing the daily returns of KOSPI 200 eight sector indices from January 2008 to December 2013, we find that stock market correlations significantly increased during the GFC period. The Financial Sector had the highest correlation between the Constructions-Machinery Sector; however, the Consumer Discretionary and Consumer Staples sectors indicated a relatively lower correlation between the Financial Sector. In terms of model fitting, the DCC with t distribution model concludes as the best among the four alternatives based on BIC, and the estimated shape parameter of t distribution is less than 10, implicating a strong tail dependence between the sectors. We report little asymmetric effect in correlation dynamics between sectors; however, we find strong asymmetric effect in volatility dynamics for each sector return.

Chattering-Free Sliding Mode Control with a Time-Varying Sliding Surface

  • Kyung, Tai-Hyun;Kim, Jong-Shik;Lee, Kyu-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.151.4-151
    • /
    • 2001
  • Chattering-free sliding mode control is derived from the reaching law method and Lyapunov stability theorem. Its control input Is composed of continuous term and discontinuous term. By the combination of these terms, the robustness and tracking performance can be improved and the chattering can be avoided. But in the reaching mode, the sliding mode control is sensitive to the modeling uncertainties, parameter variations and disturbances, also it needs a large control input. These result in poor transient responses. In this paper, to overcome these problems in the reaching mode, a time-varying sliding surface is proposed. And it is applied to a 2-link SCARA robot manipulator, experimental results show that the transient response is improved and its ...

  • PDF

IMPLEMENTATION EXPERIMENT OF VTP BASED ADAPTIVE VIDEO BIT-RATE CONTROL OVER WIRELESS AD-HOC NETWORK

  • Ujikawa, Hirotaka;Katto, Jiro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.668-672
    • /
    • 2009
  • In wireless ad-hoc network, knowing the available bandwidth of the time varying channel is imperative for live video streaming applications. This is because the available bandwidth is varying all the time and strictly limited against the large data size of video streaming. Additionally, adapting the encoding rate to the suitable bit-rate for the network, where an overlarge encoding rate induces congestion loss and playback delay, decreases the loss and delay. While some effective rate controlling methods have been proposed and simulated well like VTP (Video Transport Protocol) [1], implementing to cooperate with the encoder and tuning the parameters are still challenging works. In this paper, we show our result of the implementation experiment of VTP based encoding rate controlling method and then introduce some techniques of our parameter tuning for a video streaming application over wireless environment.

  • PDF

A STUDY ON SIMPLE TIME VARYING FEEDFORWARD COMPENSATOR

  • Kwon, Byung-Moon;Son, Won-Kee;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.500-500
    • /
    • 2000
  • In this paper, we deal wit,11 a simple tim varying feedforward compensator in order to decrease the amount of undershoots and overshoots on the step response. This compensator makes the step type input be a ramp input with saturation for 0 $\leq$ t < $\alpha$. It will be shown that the system with the feedforward compensator has small amount of undershoot and overshoot at the price of rise time. Also, provided the system properly stable, the influence of the design parameter $\alpha$ on the step response of the system with the feedforward compensator is investigated in the current paper.

  • PDF

수중운동의 표적추적성능 해석과 제어기 설계

  • 윤강섭;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.330-335
    • /
    • 1995
  • The actuator's response delay, disturbance and measurement noise can often cause a significant error in the target tracking of an underwater vehicle. The first purpose of this paper is error analysis about motion of an underwater vehicle when the closed loop system has actuator and disturbance and noise. The underwater vehicle is simulated for cases of various disturbances. The second purpose is robust controller design for the underwater vehicle with parameter uncertainty. So, two robust control methods are applied for the underwater vehicle. One is standard $H_{\infty}$ control, and the other is time-varying sliding mode control with modified saturation function. Suboptimal design parameters for $H_{\infty}$ control, and design parameters for time-varying switching surfaces are provided Simulations for the two controllers are carried out and their performances are analyzed.lyzed.

  • PDF

Adaptive Chaos Control of Time-Varying Permanent-Magnet Synchronous Motors (시변 영구자석형 동기 전동기의 적응형 카오스 제어)

  • Jeong, Sang-Chul;Cho, Hyun-Cheol;Lee, Hyung-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • Chaotic behavior in motor systems is undesired dynamics in real-time implementation since the speed is oscillated in a wide range and the torque is changed by a random manner. We present an adaptive control approach for time-varying permanent-magnet synchronous motors (PMSM) with chaotic phenomenon. We consider that its parameters are changed randomly within certain bounds. First, a nonlinear system model of a PMSM is transformed to derive a nominal linear control strategy. Then, an auxiliary control for compensating real-time control error occurred by system perturbation due to parameter change is designed by using Lyapunov stability theory. Numerical simulation is accomplished for evaluating its efficiency and reliability comparing with the traditional control method. Additionally, we test our control method in real-time motor experiment including a PSoC based drive system to demonstrate its practical applicability.

  • PDF

Experimental identification of nonlinear model parameter by frequency domain method (주파수영역방법에 의한 비선형 모델변수의 실험적 규명)

  • Kim, Won-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.458-466
    • /
    • 1998
  • In this work, a frequency domain method is tested numerically and experimentally to improve nonlinear model parameters using the frequency response function at the nonlinear element connected point of structure. This method extends the force-state mapping technique, which fits the nonlinear element forces with time domain response data, into frequency domain manipulations. The force-state mapping method in the time domain has limitations when applying to complex real structures because it needd a time domain lumped parameter model. On the other hand, the frequency domain method is relatively easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of each substurcture. Since this mehtod is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude bot also selecting excitation frequency domain method has some advantages over the classical force-state mapping technique in the number of data points needed in curve fit and the sensitivity to response noise.