• Title/Summary/Keyword: Time-variant

Search Result 437, Processing Time 0.031 seconds

Elastic Demand Stochastic User Equilibrium Assignment Based on a Dynamic System (동적체계기반 확률적 사용자균형 통행배정모형)

  • Im, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.4
    • /
    • pp.99-108
    • /
    • 2007
  • This paper presents an elastic demand stochastic user equilibrium traffic assignment that could not be easily tackled. The elastic demand coupled with a travel performance function is known to converge to a supply-demand equilibrium, where a stochastic user equilibrium (SUE) is obtained. SUE is the state in which all equivalent path costs are equal, and thus no user can reduce his perceived travel cost. The elastic demand SUE traffic assignment can be formulated based on a dynamic system, which is a means of describing how one state develops into another state over the course of time. Traditionally it has been used for control engineering, but it is also useful for transportation problems in that it can describe time-variant traffic movements. Through the Lyapunov Function Theorem, the author proves that the model has a stable solution and confirms it with a numerical example.

A Study on the Development and Effectiveness of Mind Healing Program for University Students Based on Reality Therapy (현실요법을 활용한 대학생 마음치유 프로그램 개발 및 효과)

  • Ha, Tai-Hyun;Baek, Hyuen-Ki
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.433-439
    • /
    • 2012
  • This article aims at developing Mind Healing Program for university students, whose anxiety and depression are getting serious. Reality therapy was experimented total 10 times(one time per week), which was the revision and supplement of Woo(1994)'s reality therapy program. It consists of introducing program and self, understanding 5 mind desires, identifying obstacles of conversation, learning efficient communication skills, controling irrational expectation of others, recognizing mind gap, problems of choice and responsibility, nurturing mind, etc. The effectiveness of this program was verified through a model whose research variants were participation motivation, participation satisfaction, and mental health. Direct effects of participation motivation, participation satisfaction, and mental health were less satisfactory than indirect effects of the time when program satisfaction is a variant. It is concluded that mental health of participants is getting better when more satisfactory program should be provided, rather than motivation of simple participation.

An acoustic channel estimation using least mean fourth with an average gradient vector and a self-adjusted step size (기울기 평균 벡터를 사용한 가변 스텝 최소 평균 사승을 사용한 음향 채널 추정기)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.3
    • /
    • pp.156-162
    • /
    • 2018
  • The LMF (Least Mean Fourth) algorithm is well known for its fast convergence and low steady-state error especially in non-Gaussian noise environments. Recently, there has been increasing interest in the LMS (Least Mean Square) algorithms with self-adjusted step size. It is because the self-adjusted step-size LMS algorithms have shown to outperform the conventional fixed step-size LMS in the various situations. In this paper, a self-adjusted step-size LMF algorithm is proposed, which adopts an averaged gradient based step size as a self-adjusted step size. It is expected that the proposed algorithm also outperforms the conventional fixed step-size LMF. The superiority of the proposed algorithm is confirmed by the simulations in the time invariant and time variant channels.

Feature-Based Image Retrieval using SOM-Based R*-Tree

  • Shin, Min-Hwa;Kwon, Chang-Hee;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.223-230
    • /
    • 2003
  • Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.

  • PDF

Adolescent Self-esteem, Career Identity, School Learning Activity and Life Satisfaction Change: From Middle School to High School (중학교에서 고3까지의 자아존중감, 진로정체감, 학습활동과 삶의 만족도 관계연구: 4년간의 변화를 중심으로)

  • Kim, Sunah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.507-514
    • /
    • 2018
  • This study utilized latent growth curve modeling to investigate the trajectories of adolescent life satisfaction changes in middle and high school students. The effects of self-esteem, career identity, school learning activity, gender, and household earnings on life satisfaction changes were examined. Data was obtained from the Korea Child Youth Panel Survey (KYCPS), a longitudinal study following students for 7 years. Year 3-6 data was utilized. Results found that the life satisfaction trajectory resulted as a quadratic model in which individual differences were significant. Second, school learning activity used as a time variant variable had a positive significant effect on life satisfaction each year. Third, gender and self-esteem as time invariant variables had significant effects on initial levels while self-esteem had effects on the slope and quadratic change. Further implications and research issues are discussed.

Power Allocation and Mode Selection in Unmanned Aerial Vehicle Relay Based Wireless Networks

  • Zeng, Qian;Huangfu, Wei;Liu, Tong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.711-732
    • /
    • 2019
  • Many unmanned aerial vehicle (UAV) applications have been employed for performing data collection in facilitating tasks such as surveillance and monitoring objectives in remote and dangerous environments. In light of the fact that most of the existing UAV relaying applications operate in conventional half-duplex (HD) mode, a full-duplex (FD) based UAV relay aided wireless network is investigated, in which the UAV relay helps forwarding information from the source (S) node to the destination (D). Since the activated UAV relays are always floating and flying in the air, its channel state information (CSI) as well as channel capacity is a time-variant parameter. Considering decode-and-forward (DF) relaying protocol in UAV relays, the cooperative relaying channel capacity is constrained by the relatively weaker one (i.e. in terms of signal-to-noise ratio (SNR) or signal-to-interference-plus-noise ratio (SINR)) between S-to-relay and relay-to-D links. The channel capacity can be optimized by adaptively optimizing the transmit power of S and/or UAV relay. Furthermore, a hybrid HD/FD mode is enabled in the proposed UAV relays for adaptively optimizing the channel utilization subject to the instantaneous CSI and/or remaining self-interference (SI) levels. Numerical results show that the channel capacity of the proposed UAV relay aided wireless networks can be maximized by adaptively responding to the influence of various real-time factors.

Classifying Indian Medicinal Leaf Species Using LCFN-BRNN Model

  • Kiruba, Raji I;Thyagharajan, K.K;Vignesh, T;Kalaiarasi, G
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3708-3728
    • /
    • 2021
  • Indian herbal plants are used in agriculture and in the food, cosmetics, and pharmaceutical industries. Laboratory-based tests are routinely used to identify and classify similar herb species by analyzing their internal cell structures. In this paper, we have applied computer vision techniques to do the same. The original leaf image was preprocessed using the Chan-Vese active contour segmentation algorithm to efface the background from the image by setting the contraction bias as (v) -1 and smoothing factor (µ) as 0.5, and bringing the initial contour close to the image boundary. Thereafter the segmented grayscale image was fed to a leaky capacitance fired neuron model (LCFN), which differentiates between similar herbs by combining different groups of pixels in the leaf image. The LFCN's decay constant (f), decay constant (g) and threshold (h) parameters were empirically assigned as 0.7, 0.6 and h=18 to generate the 1D feature vector. The LCFN time sequence identified the internal leaf structure at different iterations. Our proposed framework was tested against newly collected herbal species of natural images, geometrically variant images in terms of size, orientation and position. The 1D sequence and shape features of aloe, betel, Indian borage, bittergourd, grape, insulin herb, guava, mango, nilavembu, nithiyakalyani, sweet basil and pomegranate were fed into the 5-fold Bayesian regularization neural network (BRNN), K-nearest neighbors (KNN), support vector machine (SVM), and ensemble classifier to obtain the highest classification accuracy of 91.19%.

Automatic Classification of Continuous Heart Sound Signals Using the Statistical Modeling Approach (통계적 모델링 기법을 이용한 연속심음신호의 자동분류에 관한 연구)

  • Kim, Hee-Keun;Chung, Yong-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.144-152
    • /
    • 2007
  • Conventional research works on the classification of the heart sound signal have been done mainly with the artificial neural networks. But the analysis results on the statistical characteristic of the heart sound signal have shown that the HMM is suitable for modeling the heart sound signal. In this paper, we model the various heart sound signals representing different heart diseases with the HMM and find that the classification rate is much affected by the clustering of the heart sound signal. Also, the heart sound signal acquired in real environments is a continuous signal without any specified starting and ending points of time. Hence, for the classification based on the HMM, the continuous cyclic heart sound signal needs to be manually segmented to obtain isolated cycles of the signal. As the manual segmentation will incur the errors in the segmentation and will not be adequate for real time processing, we propose a variant of the ergodic HMM which does not need segmentation procedures. Simulation results show that the proposed method successfully classifies continuous heart sounds with high accuracy.

Process Fault Probability Generation via ARIMA Time Series Modeling of Etch Tool Data

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.241-241
    • /
    • 2012
  • Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.

  • PDF

Finding the time sensitive frequent itemsets based on data mining technique in data streams (데이터 스트림에서 데이터 마이닝 기법 기반의 시간을 고려한 상대적인 빈발항목 탐색)

  • Park, Tae-Su;Chun, Seok-Ju;Lee, Ju-Hong;Kang, Yun-Hee;Choi, Bum-Ghi
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.3
    • /
    • pp.453-462
    • /
    • 2005
  • Recently, due to technical improvements of storage devices and networks, the amount of data increase rapidly. In addition, it is required to find the knowledge embedded in a data stream as fast as possible. Huge data in a data stream are created continuously and changed fast. Various algorithms for finding frequent itemsets in a data stream are actively proposed. Current researches do not offer appropriate method to find frequent itemsets in which flow of time is reflected but provide only frequent items using total aggregation values. In this paper we proposes a novel algorithm for finding the relative frequent itemsets according to the time in a data stream. We also propose the method to save frequent items and sub-frequent items in order to take limited memory into account and the method to update time variant frequent items. The performance of the proposed method is analyzed through a series of experiments. The proposed method can search both frequent itemsets and relative frequent itemsets only using the action patterns of the students at each time slot. Thus, our method can enhance the effectiveness of learning and make the best plan for individual learning.

  • PDF