• 제목/요약/키워드: Time-series forecasting

검색결과 597건 처리시간 0.023초

이어도 해양과학기지 관측 수온과 위성 해수면온도 합성장 자료와의 비교 (Comparison of Multi-Satellite Sea Surface Temperatures and In-situ Temperatures from Ieodo Ocean Research Station)

  • 우혜진;박경애;최도영;변도성;정광영;이은일
    • 한국지구과학회지
    • /
    • 제40권6호
    • /
    • pp.613-623
    • /
    • 2019
  • 지난 수십년 동안 인공위성을 통해 광범위하고 주기적으로 관측된 해수면온도 자료를 사용하여 일별 해수면온도 합성장이 생산되고 있으며 기후변화 감시와 해양 대기 예측 등 다양한 목적으로 활용되어 왔다. 본 연구에서는 지역적인 해역에서 최적화된 활용을 위해 한반도 주변해역에서 해수면온도 합성장 자료의 정확도 평가와 오차 특성 분석을 수행하였다. 2016년 1월부터 12월까지 이어도 해양과학기지 관측 수온 자료를 활용하여 4종의 다중 인공위성 기반 해수면온도 합성장 자료(OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis), OISST (Optimum Interpolation Sea Surface Temperature), CMC (Canadian Meteorological Centre) 해수면온도 및 MURSST (Multi-scale Ultra-high Resolution Sea Surface Temperature))를 비교하여 각 해수면온도 합성장의 정확도를 평가하였다. 이어도 해양과학기지 수온 자료에 대하여 각 해수면온도 합성장은 최소 0.12℃ (OISST)와 최대 0.55℃ (MURSST)의 편차와 최소 0.77℃ (CMC 해수면온도)와 최대 0.96℃ (MURSST)의 평균 제곱근 오차를 나타냈다. 해수면온도 합성장 사이의 상호 비교 결과에서는 -0.38-0.38℃의 편차와 0.55-0.82℃의 평균 제곱근 오차의 범위를 보였으며 OSTIA와 CMC 해수면온도 자료가 가장 작은 오차 특성을 보인 반면 OISST와 MURSST 자료는 가장 큰 오차 특성을 나타내었다. 이어도 해양과학기지와 가장 가까운 지점에서 해수면온도 합성장 자료를 추출하여 시계열을 비교한 결과에서는 이어도 해양과학기지 관측 수온 뿐만 아니라 모든 해수면온도 합성장 자료에서 뚜렷한 계절 변동을 보였으나 봄철 해수면온도 합성장은 이어도 해양과학기지 관측 수온에 비해 과대추정되는 경향이 나타났다.

기상 예보 및 위성 자료를 이용한 우리나라 산불위험지수의 시공간적 고도화 (Spatio-temporal enhancement of forest fire risk index using weather forecast and satellite data in South Korea)

  • 강유진;박수민;장은나;임정호;권춘근;이석준
    • 한국지리정보학회지
    • /
    • 제22권4호
    • /
    • pp.116-130
    • /
    • 2019
  • 우리나라는 산림 내 연료 물질 증가와 기후변화 등의 요인으로 산불의 연중화와 대형화가 증가하는 추세에 있으므로 산불 발생 확률에 대한 정보를 제공함으로써 산불 발생을 예방하여 피해를 최소화할 필요성이 대두되고 있다. 본 연구에서는 현 산불예보시스템에서 제공하는 산불위험지수(DWI; Daily Weather Index)를 개선하기 위한 방법을 살펴보았다. 즉, 우리나라 산불위험지수의 시간 및 공간적 정확성 향상을 통한 고도화를 목적으로, 기상청에서 제공하는 동네예보 자료, 위성기반의 가뭄 지수, 산불 다발 지역 지도를 융합하여 5km 격자 형태로 제공되는 새로운 산불위험지수(FRI; Fire Risk Index)를 제안하였다. 산불위험지수는 캐나다에서 현업으로 사용되는 미세 연료 지수를 기반으로 우리나라에 최적화한 미세 연료 지수, 가뭄지수의 곱과 시간 및 공간적 가중치를 통하여 산출된다. 시간적인 정확성 향상을 위하여 산림청에서 제공하는 산불 피해 대장 표를 이용하여 월별 산불 통계량을 통한 월별 가중치를 적용하였으며, 공간적인 정확성 향상을 위하여 산불 다발 지역 지도의 산불 밀도 정보를 이용하여 가중치를 적용하였다. 월별 산불 발생 건수와 제안된 산불위험지수의 시계열을 분석하였을 때 증가 및 감소 경향을 잘 모의하고 있었으며, 5km 격자 형태로 산불위험지수를 제공함으로써 행정 구역 단위로 산불위험지수를 제공할 때보다 상세한 정보를 제공할 수 있었으므로 지역적으로 더욱 정확하고 구체적인 산불 예방에 대한 의사 결정에 도움이 될 것으로 기대된다.

2000년대 기후변화를 반영한 봄철 산불발생확률모형 개발 (Developing Korean Forest Fire Occurrence Probability Model Reflecting Climate Change in the Spring of 2000s)

  • 원명수;윤석희;장근창
    • 한국농림기상학회지
    • /
    • 제18권4호
    • /
    • pp.199-207
    • /
    • 2016
  • 본 연구는 기후변화에 따른 1990년대와 2000년대 봄철에 발생하는 산불의 공간적 분포가 크게 변화됨에 따라 현재 진행되고 있는 기후변화에 대응하기 위한 산불 발생확률모형의 변화를 비교하고, 2000년대 이후의 산불발생확률모형을 적용함으로써 우리나라에서의 기후 변화로 인한 산불발생 변화 예측을 현실적으로 반영하기 위해 수행하였다. 본 연구에서는 전국 특정지역의 일일 산불발생위험도 예측하기 위하여 산불발생과 관련이 있는 기상요소로 규명된 습도, 기온, 풍속 등 기상정보를 이용하여 기후변화를 반영한 2000년대의 전국 9개 권역의 봄철 기상요소에 의한 일일 산불발생위험지수(daily weather index, DWI)를 개발하였다. 첫 번째로 구체적인 개발방법은 전국 9개 광역지역별로 산불발생에 영향을 주는 기상요소를 규명하여 지역별로 산불발생의 유무를 종속변수(dependent variable)로 두고 산불발생 관련 기상요소들을 독립변수(independent variable)로 하여 로지스틱 회귀모형(logistic regression model)을 적용하여 산불발생확률을 추정하였다. 1970년대 이후 우리나라의 봄철 건조계절의 평균 기후장 분석 결과, 영남지역에서 기온은 상승하고 습도와 강수량의 감소폭이 큰 것으로 나타났다. 반면 강원지역은 모든 기상요소에서 변화폭이 비교적 낮아 산불발생 환경 측면에서 다른 지역보다 안정적인 것으로 사료된다. 향후 권역별 기후 변화 특성과 산불발생 경향을 비교함으로써 산불발생에 영향을 미치는 권역별 주요 기후인자를 선별을 수 있을 것으로 판단된다. 1990년대와 비교하여 2000년대의 산불의 패턴은 남북으로 분할되던 경향이 광역 대도시를 중심으로 인근 지역으로 확대되면서 백두대간을 중심으로 동서로 분할되는 경향을 보였다. 이러한 결과를 토대로 2000년대 봄철 기상에 의한 산불발생확률모형 개발을 수행하였다. 각 권역별 산불발생과 관련되는 기상요소로 경상남 북도, 전라남도 4개 권역은 최고기온, 상대습도, 실효습도, 평균풍속, 경기도와 충청남도 2개 권역은 최고기온, 상대습도, 평균풍속, 충청북도는 최고기온, 상대습도, 실효습도, 전라북도는 최고기온과 상대습도, 마지막으로 제주도는 최고기온과 평균풍속에서 95% 이상의 신뢰도에서 유의성이 있는 것으로 나타났다. 제주도를 제외한 모든 권역에서 99%의 신뢰수준에서 통계적으로 유의한 것으로 나타났으며, 표본내 예측력은 68.7~80.7%로 나타나 모형의 적합도는 매우 높은 것으로 나타났다. 개발된 모형은 현재 운영중인 산림청 국립산림과학원의 국가산불위험예보시스템에 반영하여 기후변화에 따른 2000년대의 산불발생위험을 정확히 예측하여 산불예방은 물론 진화자원의 효율적인 배치를 통해 시간과 인적 경제적 비용을 절감하고 산불피해를 최소화 할 수 있는 선택과 집중의 산불정책에 일조할 수 있을 것으로 기대한다.

경기순환과 우리나라 정기선 해운의 영업이익률 변동 요인 (The Economic Cycle and Contributing Factors to the Operating Profit Ratio of Korean Liner Shipping)

  • 목익수;류동근
    • 한국항해항만학회지
    • /
    • 제46권4호
    • /
    • pp.375-384
    • /
    • 2022
  • 해운산업은 수요와 공급뿐만 아니라 여러 경제지표와 사회적 사건 등 복잡한 변수에 의하여 영향을 받으며 순환한다. 본 연구는 우리나라 13개 정기선사에 대하여 30여 년의 영업실적을 분석하여 1990년대 말의 외환위기, 2000년대 말의 글로벌 금융위기, 그리고 최근의 코로나 팬데믹 위기 상황에서 정기선 해운기업의 영업이익률에 어떤 요인들이 영향을 미치는지 분석하였다. 정기선사의 특성을 고려하여 원양과 근해로 구분하고, 한국채택국제회계기준(K-IFRS)에 근거한 영업이익률과 시계열에 의한 해상물동량, 선박량 및 거시경제지표를 이용하여 다중회귀분석으로 그 요인을 분석하였다. 한편 사회적 사건으로 인하여 경제지표가 이상하게 탐지된 경기 침체기에 대하여는 별도로 분석하였다. 그 결과 중국컨테이너운임지수 (CCFI)는 원양 및 근해 정기선사 모두에게 정(+)의 영향을 주었다. 한국 컨테이너 선박량은 원양 정기선사에만 정의 영향을 주었고, 세계물동량과 유가는 근해정기선사 영업이익률에 부(-)의 영향을 미쳤다. 더불어 세계와 우리나라 GDP도 미미하게나마 근해선사 영업이익률에 영향을 주었다. 그 외 중국의 GDP, 환율, 이자율 등은 양 그룹의 영업이익률에 유의미한 영향을 주지 못하였다. 또한 경기침체기 중 2009년 글로벌 금융위기를 제외하고 1998년 외환위기 및 2020년 코로나 팬데믹 기간은 오히려 경제지표와 부의 상관관계를 보여주었다. 본 연구는 해운경기 예측의 복잡성과 어려움을 감안하여 금융비용을 고려하지 않은 영업이익률에 초점을 맞추었고, 3번의 경제·사회적 사건을 포함한 장기간의 실증 분석을 통하여 결론을 도출하였다.

대기오염물질 농도에 따른 천식 응급환자 수 예측 연구 (A prediction study on the number of emergency patients with ASTHMA according to the concentration of air pollutants)

  • 이한주;지민규;김청원
    • 서비스연구
    • /
    • 제13권1호
    • /
    • pp.63-75
    • /
    • 2023
  • 산업이 발전하면서 대기오염물질에 대한 관심도는 높아졌다. 대기오염물질은 환경오염, 지구 온난화 등 다양한 분야에 영향을 미쳤다. 그 중 환경성 질환은 대기오염물질에 의해 영향을 받은 분야 중 하나이다. 대기오염물질은 분자의 크기가 작아 인체의 피부나 호흡기를 통해 영향을 미칠 수 있다. 이러한 점 때문에 대기오염물질과 환경성 질환에 대한 연구가 다양하게 진행됐다. 환경성 질환의 일환인 천식은 증상이 심해져 천식발작을 일으킬 경우 생명에 위협을 줄 수 있고 성인 천식의 경우 한번 발병을 하면 완치가 어렵다. 천식을 악화시키는 요인에는 황사, 대기오염이 포함된다. 전 세계적으로 천식은 유병률이 증가하고 있는 추세이다. 본 논문에서는 대기오염물질이 천식 환자의 응급실 입원 건수와 어떤 상관관계를 가지는지 연구하고 상관관계가 높은 대기오염물질을 이용하여 미래의 천식 환자 수를 예측했다. 대기오염물질은 아황산가스(SO2), 일산화탄소(CO2), 오존(O3), 이산화질소(NO2)와 미세먼지(PM10) 5가지 대기오염물질의 농도를 이용하고 환경성 질환은 천식 환자의 응급실 입원 건수 데이터를 이용하였다. 대기오염물질과 천식의 응급환자 수에 대한 데이터는 2013년 1월1일 부터 2017년 12월 31일 까지 총 5년 치의 데이터를 이용하였다. 모델은 Informer와 LTSF-Linear의 두 가지 모델을 이용하여 예측을 진행하였고 모델의 성능을 측정하기 위해 MAE, MAPE, RMSE 의 성능지표를 이용했다. 천식의 응급환자 수 예측은 응급환자 수를 포함하여 예측을 진행한 경우와 포함하지 않고 진행한 두 가지 경우 모두 진행하여 결과를 비교했다. 본 논문은 Informer와 LTSF-Linear 모델을 이용한 천식 응급환자 수의 예측에 모델의 성능을 향상 시키는 대기 오염물질을 제시한다.

기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구 (A Study on Intelligent Value Chain Network System based on Firms' Information)

  • 성태응;김강회;문영수;이호신
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.67-88
    • /
    • 2018
  • 최근까지도 중소기업의 지속성장 및 경쟁력 확보에 대한 중요함을 인식함에 따라, 정부 차원에서의 유형 자원(R&D 인력, 자금 등)에 대한 지원이 주로 투입되어 왔다. 그러나 사업지원의 적절성이나 효과성, 효율성 면에서 서로 상충되는 정책부분이 존재하여 과소 지원이나 중복 지원 등 지원체계의 비효율성 문제가 제기되어온 것도 사실이다. 정부나 기업 관점에서는 중소기업의 한정된 자원으로 인해, 외부와의 협력을 통한 기술개발 및 역량강화가 기업의 경쟁우위를 창출하는 근간이라 보고 있으며, 이를 위한 가치창출 활동을 강조하고 있다. 기업 레벨에서의 지식생태계 구축을 통해 일련의 가치사슬로부터 기업거래 관계를 분석하고 결과를 가시화할 수 있는 밸류체인 네트워크 분석이 필요한 것도 이 때문이다. 특허/제품/기업명 검색을 통해 관련 제품의 정보나 특허 보유 기업의 기술(제품) 현황 정보를 제공하는 기술기회발굴시스템(Technology Opportunity Discovery system), 기업(재무)정보와 신용정보을 열람하게 해주는 CRETOP이나 KISLINE 등은 존재하고 있으나 밸류체인 네트워크 분석기반으로 유사(경쟁)기업의 리스트나 향후 거래 가능한 잠재 거래처 정보를 제공해주는 시스템은 부재한 실정이다. 따라서, 본 고에서는 KISTI에서 개발 운영중인 기업 비즈니스 전략수립 지원 파트너인 '밸류체인 네트워크 시스템(Value Chain Network System : VCNS)'을 중심으로, 탑재된 네트워크 기반 분석모듈의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)의 구성 로직과 시스템 활용방안을 고찰하며, 산업구조를 이해하고 기업의 신제품 개발을 위한 핵심정보가 되고 있는 지능형 밸류체인 분석 시스템의 네트워크 가시화 기능을 살펴보기로 한다. 한 기업이 다른 기업 대비 경쟁우위를 확보하기 위해서는 보유 특허 또는 현재 생산하고 있는 제품에 대한 경쟁자 식별이 필요하며, 세부 업종별 유사(경쟁)기업을 탐색하는 일은 대상기업의 사업화 경쟁력 확보에 핵심이 된다. 또한 기업간 비즈니스 활동인 거래정보는 유사 분야로 진출할 경우 잠재 거래처 정보를 제공하는 중요한 역할을 수행한다. 이러한 기업간 판매정보를 기반으로 구축된 네트워크 맵을 활용하여 기업 또는 업종 수준의 경쟁자를 식별하는 일은 밸류체인 분석의 핵심모듈로 탑재될 수 있다. 밸류체인 네트워크 시스템(VCNS)은 단순 수집된 종래의 기업정보에 밸류체인(value chain) 및 산업구조 분석개념을 접목하여 개별 기업의 시장경쟁 상황은 물론 특정 산업의 가치사슬 관계를 파악할 수 있다. 특히 업종구조 파악, 경쟁사 동향 파악, 경쟁사 분석, 판매처 및 구매처 발굴, 품목별 산업동향, 유망 품목 발굴, 신규 진입기업 발굴, VC별 핵심기업 및 품목 도출, 해당 기업별 보유 특허 파악 등 기업 레벨에서의 유용한 정보분석 툴로 활용 가능하다. 또한, 거래처 정보 및 재무데이터로부터 분석된 결과의 객관성 및 신뢰성을 기반으로, 현재 국내에서 이용 중인 15,000여개 회원기업과 연구개발서비스업 종사자, 출연(연) 및 공공기관 등에서 사업평가 정보지원, R&D 의사결정 지원 및 중 단기 수요예측 전망 등 다양한 목적(용도)에 밸류체인 네트워크 시스템을 활용할 수 있을 것으로 기대된다. 기업의 사업경쟁력 강화를 위해 정부기관 및 민간 연구개발서비스 기업을 중심으로 기술(특허) 및 시장정보가 제공되어 왔으며, 이는 특허분석(등급, 계량분석 위주) 또는 시장분석(시장보고서 기반 시장규모 및 수요예측 위주)의 형태로 지원되어 왔다. 그러나 기업이 사업화진출 단계에서 겪게 되는 애로요인의 하나인 정보부족을 해결하는데 한계가 있었으며, 특히 경쟁기업 및 거래가능 기업 후보군에 대한 탐색정보는 입수하기 어려웠다. 본 연구를 통해 제안된 네트워크맵 및 보유 데이터 기반의 실시간 밸류체인 가시화 서비스모듈이 중견 중소기업이 당면한 신규시장 진출시 경쟁기업 대비 예상점유율, (예상)매출액 수준, 어느 기업을 컨택하여 유통망(원자재/부품에 대한 공급처, 완제품/모듈에 대한 수요처)을 확보할 지에 대한 핵심정보를 제공할 수 있을 것으로 기대된다. 향후 연구에서는 대체기업(또는 대체품목) 경쟁지표의 개발과 연구주체의 참여를 통한 경쟁요인별 지표의 고도화 연구, VCNS의 성능향상을 위한 데이터마이닝 기술 및 알고리즘을 추가 반영하도록 수행하고자 한다.

기계학습을 활용한 상품자산 투자모델에 관한 연구 (A Study on Commodity Asset Investment Model Based on Machine Learning Technique)

  • 송진호;최흥식;김선웅
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.127-146
    • /
    • 2017
  • 상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.