• Title/Summary/Keyword: Time-series deformation

Search Result 120, Processing Time 0.021 seconds

The Data Processing Method for Small Samples and Multi-variates Series in GPS Deformation Monitoring

  • Guo-Lin, Liu;Wen-Hua, Zheng;Xin-Zhou, Wang;Lian-Peng, Zhang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.185-189
    • /
    • 2006
  • Time series analysis is a frequently effective method of constructing model and prediction in data processing of deformation monitoring. The monitoring data sample must to be as more as possible and time intervals are equal roughly so as to construct time series model accurately and achieve reliable prediction. But in the project practice of GPS deformation monitoring, the monitoring data sample can't be obtained too much and time intervals are not equal because of being restricted by all kinds of factors, and it contains many variates in the deformation model moreover. It is very important to study the data processing method for small samples and multi-variates time series in GPS deformation monitoring. A new method of establishing small samples and multi-variates deformation model and prediction model are put forward so as to resolve contradiction of small samples and multi-variates encountered in constructing deformation model and improve formerly data processing method of deformation monitoring. Based on the system theory, a deformation body is regarded as a whole organism; a time-dependence linear system model and a time-dependence bilinear system model are established. The dynamic parameters estimation is derived by means of prediction fit and least information distribution criteria. The final example demonstrates the validity and practice of this method.

  • PDF

Improvement of Small Baseline Subset (SBAS) Algorithm for Measuring Time-series Surface Deformations from Differential SAR Interferograms (차분 간섭도로부터 지표변위의 시계열 관측을 위한 개선된 Small Baseline Subset (SBAS) 알고리즘)

  • Jung, Hyung-Sup;Lee, Chang-Wook;Park, Jung-Won;Kim, Ki-Dong;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.165-177
    • /
    • 2008
  • Small baseline subset (SBAS) algorithm has been recently developed using an appropriate combination of differential interferograms, which are characterized by a small baseline in order to minimize the spatial decorrelation. This algorithm uses the singular value decomposition (SVD) to measure the time-series surface deformation from the differential interferograms which are not temporally connected. And it mitigates the atmospheric effect in the time-series surface deformation by using spatially low-pass and temporally high-pass filter. Nevertheless, it is not easy to correct the phase unwrapping error of each interferogram and to mitigate the time-varying noise component of the surface deformation from this algorithm due to the assumption of the linear surface deformation in the beginning of the observation. In this paper, we present an improved SBAS technique to complement these problems. Our improved SBAS algorithm uses an iterative approach to minimize the phase unwrapping error of each differential interferogram. This algorithm also uses finite difference method to suppress the time-varying noise component of the surface deformation. We tested our improved SBAS algorithm and evaluated its performance using 26 images of ERS-1/2 data and 21 images of RADARSAT-1 fine beam (F5) data at each different locations. Maximum deformation amount of 40cm in the radar line of sight (LOS) was estimated from ERS-l/2 datasets during about 13 years, whereas 3 cm deformation was estimated from RADARSAT-1 ones during about two years.

Sustainable Surface Deformation Related with 2006 Augustine Volcano Eruption in Alaska Measured Using GPS and InSAR Techniques

  • Lee, Seulki;Kim, Sukyung;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.357-372
    • /
    • 2016
  • Augustine volcano, located along the Aleutian Arc, is one of the most active volcanoes in Alaska and nearby islands, with seven eruptions occurring between 1812 and 2006. This study monitored the surface displacement before and after the most recent 2006 eruption. For analysis, we conducted a time-series analysis on data observed at the permanent GPS(Global Positioning System) observation stations in Augustine Island between 2005 and 2011. According to the surface displacement analysis results based on GPS data, the movement of the surface inflation at the average speed of 2.3 cm/year three months prior to the eruption has been clearly observed, with the post-eruption surface deflation at the speed of 1.6 cm/year. To compare surface displacements measurement by GPS observation, ENVISAT(Environmental satellite) radar satellite data were collected between 2003 and 2010 and processed the SBAS(Small Baseline Subset) method, one of the time-series analysis techniques using multiple InSAR(Interferometric Synthetic Aperture Radar) data sets. This result represents 0.97 correlation value between GPS and InSAR time-series surface displacements. This research has been completed precise surface deformation using GPS and time-series InSAR methods for a detection of precursor symptom on Augustine volcano.

Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress (온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석)

  • Moon, H.I.;Kim, H.Y.;Choi, C.W.;Jeong, K.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.496-500
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behavior of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress (온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석)

  • Moon, H.I.;Kim, H.Y.;Choi, C.W.;Jeong, K.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.288-292
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behaviour of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF

Measurement of Time-Series Surface Deformation at New Orleans Using Small Baseline Subset (SBAS) Method

  • Jo, Min-Jeong;Eom, Jin-Ah;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.49-52
    • /
    • 2008
  • New Orleans located in the estuary of the Mississippi River was attacked by Hurricane Katrina and suffered big flood on August 2005. Since unconsolidated Holocene to middle Miocene strata is the main basement rocks, land subsidence has been occurred steadily due to soil compaction and normal faulting. It was reported that the maximum subsidence rate from 2002 to 2005 was -29 mm/yr. Many studies in the area have been carried out for understanding the subsiding and potential risks caused by ground subsidence are weighted by the fact that a large area of the city is located below the mean sea level. A small baseline subset (SBAS) method is applied for effectively measuring time-series LOS (Line-of sight) surface deformation from differential synthetic aperture radar interferograms in this study. The time-series surface deformation at New Orleans was measured from RADARSAT-1 SAR images. The used dataset consists of twenty-one RADARSAT-1 fine beam mode images on descending orbits from February 2005 to February 2007 and another twenty-one RADARSAT-1 standard beam mode images on ascending orbits from January 2005 to February 2007. From this dataset, 25 and 38 differential interferograms on descending and ascending orbits were constructed, respectively. The vertical and horizontal components of surface deformation were extracted from ascending and descending LOS surface deformations. The result from vertical component of surface deformation indicates that subsidence is not significant with a mean rate of -3.1${\pm}$3.2 mm/yr.

  • PDF

Monitoring of Volcanic Activity of Augustine Volcano, Alaska Using TCPInSAR and SBAS Time-series Techniques for Measuring Surface Deformation (시계열 지표변위 관측기법(TCPInSAR와 SBAS)을 이용한 미국 알라스카 어거스틴 화산활동 감시)

  • Cho, Minji;Zhang, Lei;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.21-34
    • /
    • 2013
  • Permanent Scatterer InSAR (PSInSAR) technique extracts permanent scatterers exhibiting high phase stability over the entire observation period and calculates precise time-series deformation at Permanent Scatterer (PS) points by using single master interferograms. This technique is not a good method to apply on nature environment such as forest area where permanent scatterers cannot be identified. Another muti-temporal Interferometric Synthetic Aperture Radar (InSAR), Small BAseline Subset (SBAS) technique using multi master interferograms with short baselines, can be effective to detect deformation in forest area. However, because of the error induced from phase unwrapping, the technique sometimes fails to estimate correct deformation from a stack of interferograms. To overcome those problems, we introduced new multi-temporal InSAR technique, called Temporarily Coherence Point InSAR (TCPInSAR), in this paper. This technique utilizes multi master interferograms with short baseline and without phase unwrapping. To compare with traditional multi-temporal InSAR techniques, we retrieved spatially changing deformation because PSs have been found enough in forest area with TCPInSAR technique and time-series deformation without phase unwrapping error. For this study, we acquired ERS-1 and ERS-2 SAR dataset on Augustine volcano, Alaska and detected deformation in study area for the period 1992-2005 with SBAS and TCPInSAR techniques.

Detecting Surface Changes Triggered by Recent Volcanic Activities at Kīlauea, Hawai'i, by using the SAR Interferometric Technique: Preliminary Report (SAR 간섭기법을 활용한 하와이 킬라우에아 화산의 2018 분화 활동 관측)

  • Jo, MinJeong;Osmanoglu, Batuhan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1545-1553
    • /
    • 2018
  • Recent eruptive activity at Kīlauea Volcano started on at the end of April in 2018 showed rapid ground deflation between May and June in 2018. On summit area Halema'uma'u lava lake continued to drop at high speed and Kīlauea's summit continued to deflate. GPS receivers and electronic tiltmeters detected the surface deformation greater than 2 meters. We explored the time-series surface deformation at Kīlauea Volcano, focusing on the early stage of eruptive activity, using multi-temporal COSMO-SkyMed SAR imagery. The observed maximum deformation in line-of-sight (LOS) direction was about -1.5 meter, and it indicates approximately -1.9 meter in subsiding direction by applying incidence angle. The results showed that summit began to deflate just after the event started and most of deformation occurred between early May and the end of June. Moreover, we confirmed that summit's deflation rarely happened since July 2018, which means volcanic activity entered a stable stage. The best-fit magma source model based on time-series surface deformation demonstrated that magma chambers were lying at depths between 2-3 km, and it showed a deepening trend in time. Along with the change of source depth, the center of each magma model moved toward the southwest according to the time. These results have a potential risk of including bias coming from single track observation. Therefore, to complement the initial results, we need to generate precise magma source model based on three-dimensional measurements in further research.

Numerical Prediction of Permanent Deformation of Automotive Weather Strip (자동차용 웨더스트립의 영구변형 예측)

  • Park, Joon-Chul;Min, Byung-Kwon;Oh, Jeong-Seok;Moon, Hyung-Il;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.121-126
    • /
    • 2010
  • The automotive weather strip has functions of isolating of water, dust, noise and vibration from outside. To achieve good sealing performance, weather strip should be designed to have the high contact force and wide contact area. However, these design causes excessive permanent deformation of weather strip. The causes of permanent deformation is generally explained to be the chemical material detrioration and physical variation and cyclic loading, etc. This paper introduces a numerical method to predict the permanent deformation using the time dependent viscoelastic model which is represented by Prony series in ABAQUS. Uniaxial tension and creep tests were conducted to obtain the material data. And the lab. test for the permanent deformation was accelerated during shorter time, 300 hours. The permanent deformation of weather strip was successfully predicted under the different loading conditions and different section shapes using the suggested numerical process.

Prediction of Post-Deformation for Plastic Component Considering Residual Stress and Viscoelasticity (판류응력 및 점탄성을 고려한 플라스틱 부품의 후면형 예측)

  • Moon, H.I.;Kim, H.Y.;Choi, C.W.;Jeong, K.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.341-344
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But. using, transporting, and keeping of plastic component was happened post-deformation. As time goes by and temperature is changed, the post-deformation causes the problems of exterior design and performance. But, it is difficult to estimate the post-deformation by only thermal deformation analysis. Also, the estimation technique of the pest-deformation must be easily applied to product development and it should be reliable because development time of product is limited. In the paper. the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF