• Title/Summary/Keyword: Time-series databases

Search Result 87, Processing Time 0.026 seconds

Efficient Similarity Search in Multi-attribute Time Series Databases (다중속성 시계열 데이타베이스의 효율적인 유사 검색)

  • Lee, Sang-Jun
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.727-732
    • /
    • 2007
  • Most of previous work on indexing and searching time series focused on the similarity matching and retrieval of one-attribute time series. However, multimedia databases such as music, video need to handle the similarity search in multi-attribute time series. The limitation of the current similarity models for multi-attribute sequences is that there is no consideration for attributes' sequences. The multi-attribute sequences are composed of several attributes' sequences. Since the users may want to find the similar patterns considering attributes's sequences, it is more appropriate to consider the similarity between two multi-attribute sequences in the viewpoint of attributes' sequences. In this paper, we propose the similarity search method based on attributes's sequences in multi-attribute time series databases. The proposed method can efficiently reduce the search space and guarantees no false dismissals. In addition, we give preliminary experimental results to show the effectiveness of the proposed method.

Histogram-based Selectivity Estimation Method in Spatio-Temporal Databases (시공간 데이터베이스를 위한 히스토그램 기반 선택도 추정 기법)

  • Lee Jong-Yun;Shin Byoung-Cheol
    • The KIPS Transactions:PartD
    • /
    • v.12D no.1 s.97
    • /
    • pp.43-50
    • /
    • 2005
  • The Processing domains of spatio-temporal databases are divided into time-series databases for moving objects and sequence databases for discrete historical objects. Recently the selectivity estimation techniques for query optimization in spatio-temporal databases have been studied, but focused on query optimization in time-series databases. There wat no previous work on the selectivity estimation techniques for sequence databates as well. Therefore, we construct T-Minskew histogram for query optimization In sequence databases and propose a selectivity estimation method using the T-Minskew histogram. Furthermore we propose an effective histogram maintenance technique for food performance of the histogram.

Evaluation of Edge-Based Data Collection System for Key-Value Store Utilizing Time-Series Data Optimization Techniques (시계열 데이터 최적화 기법을 활용한 Key-value store의 엣지 기반 데이터 수집 시스템 평가)

  • Woojin Cho;Hyung-ah Lee;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.911-917
    • /
    • 2023
  • In today's world, we find ourselves facing energy crises due to factors such as war and climate crises. To prepare for these energy crises, many researchers continue to study systems related to energy monitoring and conservation, such as energy management systems, energy monitoring, and energy conservation. In line with these efforts, nations are making it mandatory for energy-consuming facilities to implement these systems. However, these facilities, limited by space and energy constraints, are exploring ways to improve. This research explores the operation of a data collection system using low-performance embedded devices. In this context, it proves that an optimized version of RocksDB, a Key-Value store, outperforms traditional databases when it comes to time-series data. Furthermore, a comprehensive database evaluation tool was employed to assess various databases, including optimized RocksDB and regular RocksDB. In addition, heterogeneous databases and evaluations are conducted using a UD Benchmark tool to evaluate them. As a result, we were able to see that on devices with low performance, the time required was up to 11 times shorter than that of other databases.

Noise Control Boundary Image Matching Using Time-Series Moving Average Transform (시계열 이동평균 변환을 이용한 노이즈 제어 윤곽선 이미지 매칭)

  • Kim, Bum-Soo;Moon, Yang-Sae;Kim, Jin-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.327-340
    • /
    • 2009
  • To achieve the noise reduction effect in boundary image matching, we use the moving average transform of time-series matching. Our motivation is based on an intuition that using the moving average transform we may exploit the noise reduction effect in boundary image matching as in time-series matching. To confirm this simple intuition, we first propose $\kappa$-order image matching, which applies the moving average transform to boundary image matching. A boundary image can be represented as a sequence in the time-series domain, and our $\kappa$-order image matching identifies similar images in this time-series domain by comparing the $\kappa$-moving average transformed sequences. Next, we propose an index-based matching method that efficiently performs $\kappa$-order image matching on a large volume of image databases, and formally prove the correctness of the index-based method. Moreover, we formally analyze the relationship between an order $\kappa$ and its matching result, and present a systematic way of controlling the noise reduction effect by changing the order $\kappa$. Experimental results show that our $\kappa$-order image matching exploits the noise reduction effect, and our index-based matching method outperforms the sequential scan by one or two orders of magnitude.

Physical Database Design for DFT-Based Multidimensional Indexes in Time-Series Databases (시계열 데이터베이스에서 DFT-기반 다차원 인덱스를 위한 물리적 데이터베이스 설계)

  • Kim, Sang-Wook;Kim, Jin-Ho;Han, Byung-ll
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1505-1514
    • /
    • 2004
  • Sequence matching in time-series databases is an operation that finds the data sequences whose changing patterns are similar to that of a query sequence. Typically, sequence matching hires a multi-dimensional index for its efficient processing. In order to alleviate the dimensionality curse problem of the multi-dimensional index in high-dimensional cases, the previous methods for sequence matching apply the Discrete Fourier Transform(DFT) to data sequences, and take only the first two or three DFT coefficients as organizing attributes of the multi-dimensional index. This paper first points out the problems in such simple methods taking the firs two or three coefficients, and proposes a novel solution to construct the optimal multi -dimensional index. The proposed method analyzes the characteristics of a target database, and identifies the organizing attributes having the best discrimination power based on the analysis. It also determines the optimal number of organizing attributes for efficient sequence matching by using a cost model. To show the effectiveness of the proposed method, we perform a series of experiments. The results show that the Proposed method outperforms the previous ones significantly.

  • PDF

DYNAMIC TIME WARPING FOR EFFICIENT RANGE QUERY

  • Long Chuyu Li;Jin Sungbo Seo;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.294-297
    • /
    • 2005
  • Time series are comprehensively appeared and developed in many applications, ranging from science and technology to business and entertainrilent. Similarity search under time warping has attracted much interest between the time series in the large sequence databases. DTW (Dynamic Time Warping) is a robust distance measure and is superior to Euclidean distance for time series, allowing similarity matching although one of the sequences can elastic shift along the time axis. Nevertheless, it is more unfortunate that DTW has a quadratic time. Simultaneously the false dismissals are come forth since DTW distance does not satisfy the triangular inequality. In this paper, we propose an efficient range query algorithmbased on a new similarity search method under time warping. When our range query applies for this method, it can remove the significant non-qualify time series as early as possible before computing the accuracy DTW distance. Hence, it speeds up the calculation time and reduces the number of scanning the time series. Guaranteeing no false dismissals, the lower bounding function is advised that consistently underestimate the DTW distance and satisfy the triangular inequality. Through the experimental result, our range query algorithm outperforms the existing others.

  • PDF

Shape-Based Retrieval of Similar Subsequences in Time-Series Databases (시계열 데이타베이스에서 유사한 서브시퀀스의 모양 기반 검색)

  • Yun, Ji-Hui;Kim, Sang-Uk;Kim, Tae-Hun;Park, Sang-Hyeon
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.381-392
    • /
    • 2002
  • This paper deals with the problem of shape-based retrieval in time-series databases. The shape-based retrieval is defined as the operation that searches for the (sub)sequences whose shapes are similar to that of a given query sequence regardless of their actual element values. In this paper, we propose an effective and efficient approach for shape-based retrieval of subsequences. We first introduce a new similarity model for shape-based retrieval that supports various combinations of transformations such as shifting, scaling, moving average, and time warping. For efficient processing of the shape-based retrieval based on the similarity model, we also propose the indexing and query processing methods. To verify the superiority of our approach, we perform extensive experiments with the real-world S&P 500 stock data. The results reveal that our approach successfully finds all the subsequences that have the shapes similar to that of the query sequence, and also achieves significant speedup up to around 66 times compared with the sequential scan method.

Design and Implementation of a Boundary Matching System Supporting Partial Denoising for Large Image Databases

  • Kim, Bum-Soo;Kim, Jin-Uk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.35-40
    • /
    • 2019
  • In this paper, we design and implement a partial denoising boundary matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform a fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI(graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client and sends the resulting images to the client. Experimental results show that our system provides many intuitive and accurate matching results.

Musician Search in Time-Series Pattern Index Files using Features of Audio (오디오 특징계수를 이용한 시계열 패턴 인덱스 화일의 뮤지션 검색 기법)

  • Kim, Young-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.69-74
    • /
    • 2006
  • The recent development of multimedia content-based retrieval technologies brings great attention of musician retrieval using features of a digital audio data among music information retrieval technologies. But the indexing techniques for music databases have not been studied completely. In this paper, we present a musician retrieval technique for audio features using the space split methods in the time-series pattern index file. We use features of audio to retrieve the musician and a time-series pattern index file to search the candidate musicians. Experimental results show that the time-series pattern index file using the rotational split method is efficient for musician retrievals in the time-series pattern files.

  • PDF

IMTAR: Incremental Mining of General Temporal Association Rules

  • Dafa-Alla, Anour F.A.;Shon, Ho-Sun;Saeed, Khalid E.K.;Piao, Minghao;Yun, Un-Il;Cheoi, Kyung-Joo;Ryu, Keun-Ho
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.163-176
    • /
    • 2010
  • Nowadays due to the rapid advances in the field of information systems, transactional databases are being updated regularly and/or periodically. The knowledge discovered from these databases has to be maintained, and an incremental updating technique needs to be developed for maintaining the discovered association rules from these databases. The concept of Temporal Association Rules has been introduced to solve the problem of handling time series by including time expressions into association rules. In this paper we introduce a novel algorithm for Incremental Mining of General Temporal Association Rules (IMTAR) using an extended TFP-tree. The main benefits introduced by our algorithm are that it offers significant advantages in terms of storage and running time and it can handle the problem of mining general temporal association rules in incremental databases by building TFP-trees incrementally. It can be utilized and applied to real life application domains. We demonstrate our algorithm and its advantages in this paper.