• Title/Summary/Keyword: Time-series data

Search Result 3,676, Processing Time 0.027 seconds

GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis (GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석)

  • Minsang Kim;Myung-Sook Park;Jae-Hyun Ahn;Gm-Sil Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1541-1551
    • /
    • 2023
  • Radiometric calibration is a fundamental step in ocean color remote sensing since the step to derive solar radiance spectrum in visible to near-infrared wavelengths from the sensor-observed electromagnetic signals. Generally, satellite sensor suffers from degradation over the mission period, which results in biases/uncertainties in radiometric calibration and the final ocean products such as water-leaving radiance, chlorophyll-a concentration, and colored dissolved organic matter. Therefore, the importance of radiometric calibration for the continuity of ocean color satellites has been emphasized internationally. This study introduces an approach to improve the radiometric calibration algorithm for the visible bands of the Geostationary Ocean Color Imager-II (GOCI-II) satellite with a focus on stability. Solar Diffuser (SD) measurements were employed as an on-orbit radiometric calibration reference, to obtain the continuous monitoring of absolute gain values. Time series analysis of GOCI-II absolute gains revealed seasonal variations depending on the azimuth angle, as well as long-term trends by possible sensor degradation effects. To resolve the complexities in gain variability, an azimuth angle correction model was developed to eliminate seasonal periodicity, and a sensor degradation correction model was applied to estimate nonlinear trends in the absolute gain parameters. The results demonstrate the effects of the azimuth angle correction and sensor degradation correction model on the spectrum of Top of Atmosphere (TOA) radiance, confirming the capability for improving the long-term stability of GOCI-II data.

Prediction of Water Storage Rate for Agricultural Reservoirs Using Univariate and Multivariate LSTM Models (단변량 및 다변량 LSTM을 이용한 농업용 저수지의 저수율 예측)

  • Sunguk Joh;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1125-1134
    • /
    • 2023
  • Out of the total 17,000 reservoirs in Korea, 13,600 small agricultural reservoirs do not have hydrological measurement facilities, making it difficult to predict water storage volume and appropriate operation. This paper examined univariate and multivariate long short-term memory (LSTM) modeling to predict the storage rate of agricultural reservoirs using remote sensing and artificial intelligence. The univariate LSTM model used only water storage rate as an explanatory variable, and the multivariate LSTM model added n-day accumulative precipitation and date of year (DOY) as explanatory variables. They were trained using eight years data (2013 to 2020) for Idong Reservoir, and the predictions of the daily water storage in 2021 were validated for accuracy assessment. The univariate showed the root-mean square error (RMSE) of 1.04%, 2.52%, and 4.18% for the one, three, and five-day predictions. The multivariate model showed the RMSE 0.98%, 1.95%, and 2.76% for the one, three, and five-day predictions. In addition to the time-series storage rate, DOY and daily and 5-day cumulative precipitation variables were more significant than others for the daily model, which means that the temporal range of the impacts of precipitation on the everyday water storage rate was approximately five days.

Analysis of Infrared Characteristics According to Common Depth Using RP Images Converted into Numerical Data (수치 데이터로 변환된 RP 이미지를 활용하여 공동 깊이에 따른 적외선 특성 분석)

  • Jang, Byeong-Su;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.77-84
    • /
    • 2024
  • Aging and damaged underground utilities cause cavity and ground subsidence under roads, which can cause economic losses and risk user safety. This study used infrared cameras to assess the thermal characteristics of such cavities and evaluate their reliability using a CNN algorithm. PVC pipes were embedded at various depths in a test site measuring 400 cm × 50 cm × 40 cm. Concrete blocks were used to simulate road surfaces, and measurements were taken from 4 PM to noon the following day. The initial temperatures measured by the infrared camera were 43.7℃, 43.8℃, and 41.9℃, reflecting atmospheric temperature changes during the measurement period. The RP algorithm generates images in four resolutions, i.e., 10,000 × 10,000, 2,000 × 2,000, 1,000 × 1,000, and 100 × 100 pixels. The accuracy of the CNN model using RP images as input was 99%, 97%, 98%, and 96%, respectively. These results represent a considerable improvement over the 73% accuracy obtained using time-series images, with an improvement greater than 20% when using the RP algorithm-based inputs.

The Relationship Between Entrepreneurial Competency and Entrepreneurial Intention of SME Workers: Focusing on the Mediating Effect of Start-Up Efficacy and Start-Up Mentor (중소기업 종사자의 창업역량과 창업의도 간의 영향 관계: 창업효능감과 창업멘토링의 매개효과 중심으로)

  • Oun Ju Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.6
    • /
    • pp.201-214
    • /
    • 2023
  • This study attempted to analyze the impact of individual entrepreneurial capabilities on entrepreneurial intention targeting small and medium-sized business employees, and sought to confirm the mediating effect of entrepreneurial efficacy and entrepreneurial mentoring between entrepreneurial capabilities and entrepreneurial intention. The sub-variables of entrepreneurship competency were analyzed separately into creativity, problem solving, communication, and marketing. 368 questionnaires collected from employees at small and medium-sized manufacturing companies located across the country were used for empirical analysis. A parallel dual mediation model with no causal relationship between parameters was used for empirical analysis using SPSS v26.0 and PROCESS macro v4.2. As a result of the analysis, first, among the start-up competencies, creativity, communication, and marketing were confirmed to have a significant positive (+) effect on start-up efficacy. Second, among the start-up competencies, creativity, communication, and marketing were tested to have a significant positive influence on start-up mentoring. Third, both startup efficacy and startup mentoring were found to have a significant positive influence on startup intention. Fourth, among start-up capabilities, creativity and marketing were confirmed to have a significant positive (+) effect on start-up intention. Fifth, startup efficacy and startup mentoring were found to have a mediating effect on startup intention except for problem solving among startup competencies. As a result, it was confirmed that in order to strengthen the intention to start a business among small and medium-sized business employees, start-up efficacy and start-up mentoring are important factors, and that marketing and creativity have an important influence among individual start-up capabilities, so education and prior preparation for these are necessary. As follow-up research, it will be necessary to apply multivariate models, analyze time series data, research considering external environmental factors, and test the difference between start-up capabilities and performance considering detailed population characteristics.

  • PDF

A Study on Trends of Key Issues in Port Safety at Busan Port (부산항 항만안전 주요 이슈 동향에 관한 연구)

  • Jeong-Min Lee;Do-Yeon Ha;Joo-Hye Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.1
    • /
    • pp.34-48
    • /
    • 2024
  • As global supply chain risks proliferate unpredictably, the high interdependence of port and logistics industry intensifies the risk burden. This study conducted fundamental research to explore diverse safety issues in domestic ports. Utilizing news article data about Busan Port, we employed LDA topic modeling and time-series linear regression to understand key safety trends. Over the past 30 years, Busan Port faced nine major safety issues-maritime safety, import cargo inspection, labor strikes, and natural disasters emerged cyclically. Major port safety issues in Busan Port are primarily characterized by an unpredictable nature, falling under socio-environmental and natural phenomena types, indicating a significant impact of global uncertainty. Therefore, systematic policies need to be formulated based on identified port safety issues to enhance port safety in Busan Port. Additionally, there is a need to strengthen the resilience of port safety for unpredictable risk situations. In conclusion, advanced research activities are necessary to promote port safety enhancement in response to dynamically changing social conditions.

Quantifying forest resource change on the Korean Peninsula using satellite imagery and forest growth models (위성영상과 산림생장모형을 활용한 한반도 산림자원 변화 정량화)

  • Moonil Kim;Taejin Park
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.2
    • /
    • pp.193-206
    • /
    • 2024
  • This study aimed to quantify changes in forest cover and carbon storage of Korean Peninsular during the last two decades by integrating field measurement, satellite remote sensing, and modeling approaches. Our analysis based on 30-m Landsat data revealed that the forested area in Korean Peninsular had diminished significantly by 478,334 ha during the period of 2000-2019, with South Korea and North Korea contributing 51.3% (245,725 ha) and 48.6% (232,610 ha) of the total change, respectively. This comparable pattern of forest loss in both South Korea and North Korea was likely due to reduced forest deforestation and degradation in North Korea and active forest management activity in South Korea. Time series of above ground biomass (AGB) in the Korean Peninsula showed that South and North Korean forests increased their total AGB by 146.4Tg C (AGB at 2020=357.9Tg C) and 140.3Tg C (AGB at 2020=417.4Tg C), respectively, during the last two decades. This could be translated into net AGB increases in South and North Korean forests from 34.8 and 29.4 Mg C ha-1 C to 58.9(+24.1) and 44.2(+14.8) Mg C ha-1, respectively. It indicates that South Korean forests are more productive during the study period. Thus, they have sequestered more carbon. Our approaches and results can provide useful information for quantifying national scale forest cover and carbon dynamics. Our results can be utilized for supporting forest restoration planning in North Korea

Acoustic-based estimation of fish stocks in Widas Reservoir, East Java, Indonesia

  • Siti Nurul Aida;Agus Djoko Utomo;Safran Makmur;Tuah Nanda M. Wulandari;Khoirul Fatah;Yosmaniar;Indra Suharman;Ulung Jantama Wisha
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.240-255
    • /
    • 2024
  • Widas Reservoir is situated in an area of 570 ha in the Pajaran Village, Madiun Regency, East Java Province, Indonesia, playing an essential role in fisheries, with the average fish catch per year of about 283 tons/year. This study explores the standing stock, growth parameters, mortality, and exploitation rates of several dominant fishes in Widas Reservoir. This study was carried out from February to November 2019. Fish stocks were estimated using acoustic tools, fish catch records, and sizes collected by local enumerators. Fish length frequency sampling was conducted on several dominant fish species, such as Oreochromis niloticus, Barbonymus gonionotus, and Osteochilus vittatus. Based on the length-frequency data, estimating fish population dynamics, the fish population dynamics (infinitive length (L) and growth coefficient (K)) estimation was run in a time series using the Fish Sock Analysis Tool, II (FISAT II) program package. Moreover, the estimation of natural mortality parameters, the fishing mortality parameter, and the exploitation rate was also performed. The approximated overall fish stock in the Widas Reservoir was about 79,848 kg, which lowered with the increase in water depth. Of particular concern, in the surface layer at a depth between 1-5 m, the fish stock reached 58,813 kg, while in the deeper zone (> 15 m), the value significantly lowered by about 98%, reaching 1,219 kg. These results indicate an overfishing in the Widas Reservoir. The value of the exploitation rate (E) of B. gonionotus was 0.748, O. niloticus 0.8, and O. vittatus 0.7, respectively, proving the overfishing states occurred in the study area. Therefore, regulations governing the number of catches and the use of fishing gear are crucial in Widas Reservoir, particularly the use of lift and gill nets with a mesh size of less than 2 cm.

Spectral Characteristics of Sea Surface Height in the East Sea from Topex/Poseidon Altimeter Data (Topex/Poseidon에서 관측된 동해 해수면의 주기특성 연구)

  • 황종선;민경덕;이준우;원중선;김정우
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.375-383
    • /
    • 2001
  • We extracted sea surface heights(SSH) from the TopexJPoseidon(T/P) radar altimeter data to compare with fhe SSH estimated from in-situ lide gauges(T/G) at Ulleungdo, Pohang, and SockcholMucko sites. Selection criteria such as wet/dry troposphere, ionosphere, and ocean tide were used to estimate accurate SSH. For time series analysis, the one-hour interval tide gauge SSHs were resampled al lO-day interval of the satellite SSHs. The ocean tide model applied in the altimeter data processing showed periodic aliasings of 175.5 day, 87.8 day, 62J day, 58.5 day, 49.5 day and 46.0 day, and, hence, the ZOO-day filtering was applied to reduce these spectral noises. Wavenumber correlation analysis was also applied to extract common components between the two SSHs, resulting in enhancing the correlation coefficient(CC) dramatically. The original CCs between the satenite and tide gauge SSHs are 0.46. 0.26, and 0.]5, respectively. Ulleungdo shows the largest cc bec;luase the site is far from the coast resulting in the minimun error in the satellite observations. The CCs were then increased to 0.59, 030, and 0.30, respectively, after 200.day filtering, and to 0.69, 0.63. and 0.59 after removing inversely correlative components using wavenumber correlation analysis. The CCs were greatly increased by 87, 227, and 460% when the wavenumber correlation analysis was followed by 2oo-day filtering, resulting in the final CCs of 0.86, 0.85, 0.84, respectively. It was found that the best SSHs were estimated when the two methods were applied to the original data. The low-pass filtered TIP SSHs were found to be well correlated with the TIG SSHs from tide gauges, and the best correlation results were found when we applied both low-pass filtering and spectral correlation analysis to the original SSHs.

  • PDF

A Study on derivation of drought severity-duration-frequency curve through a non-stationary frequency analysis (비정상성 가뭄빈도 해석 기법에 따른 가뭄 심도-지속기간-재현기간 곡선 유도에 관한 연구)

  • Jeong, Minsu;Park, Seo-Yeon;Jang, Ho-Won;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.107-119
    • /
    • 2020
  • This study analyzed past drought characteristics based on the observed rainfall data and performed a long-term outlook for future extreme droughts using Representative Concentration Pathways 8.5 (RCP 8.5) climate change scenarios. Standardized Precipitation Index (SPI) used duration of 1, 3, 6, 9 and 12 months, a meteorological drought index, was applied for quantitative drought analysis. A single long-term time series was constructed by combining daily rainfall observation data and RCP scenario. The constructed data was used as SPI input factors for each different duration. For the analysis of meteorological drought observed relatively long-term since 1954 in Korea, 12 rainfall stations were selected and applied 10 general circulation models (GCM) at the same point. In order to analyze drought characteristics according to climate change, trend analysis and clustering were performed. For non-stationary frequency analysis using sampling technique, we adopted the technique DEMC that combines Bayesian-based differential evolution ("DE") and Markov chain Monte Carlo ("MCMC"). A non-stationary drought frequency analysis was used to derive Severity-Duration-Frequency (SDF) curves for the 12 locations. A quantitative outlook for future droughts was carried out by deriving SDF curves with long-term hydrologic data assuming non-stationarity, and by quantitatively identifying potential drought risks. As a result of performing cluster analysis to identify the spatial characteristics, it was analyzed that there is a high risk of drought in the future in Jeonju, Gwangju, Yeosun, Mokpo, and Chupyeongryeong except Jeju corresponding to Zone 1-2, 2, and 3-2. They could be efficiently utilized in future drought management policies.

Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images (기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정)

  • Sejeong Bae ;Bokyung Son ;Taejun Sung ;Yeonsu Lee ;Jungho Im ;Yoojin Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1009-1029
    • /
    • 2023
  • Urban trees play a vital role in urban ecosystems,significantly reducing impervious surfaces and impacting carbon cycling within the city. Although previous research has demonstrated the efficacy of employing artificial intelligence in conjunction with airborne light detection and ranging (LiDAR) data to generate urban tree information, the availability and cost constraints associated with LiDAR data pose limitations. Consequently, this study employed freely accessible, high-resolution multispectral satellite imagery (i.e., Sentinel-2 data) to estimate fractional tree canopy cover (FTC) within the urban confines of Suwon, South Korea, employing machine learning techniques. This study leveraged a median composite image derived from a time series of Sentinel-2 images. In order to account for the diverse land cover found in urban areas, the model incorporated three types of input variables: average (mean) and standard deviation (std) values within a 30-meter grid from 10 m resolution of optical indices from Sentinel-2, and fractional coverage for distinct land cover classes within 30 m grids from the existing level 3 land cover map. Four schemes with different combinations of input variables were compared. Notably, when all three factors (i.e., mean, std, and fractional cover) were used to consider the variation of landcover in urban areas(Scheme 4, S4), the machine learning model exhibited improved performance compared to using only the mean of optical indices (Scheme 1). Of the various models proposed, the random forest (RF) model with S4 demonstrated the most remarkable performance, achieving R2 of 0.8196, and mean absolute error (MAE) of 0.0749, and a root mean squared error (RMSE) of 0.1022. The std variable exhibited the highest impact on model outputs within the heterogeneous land covers based on the variable importance analysis. This trained RF model with S4 was then applied to the entire Suwon region, consistently delivering robust results with an R2 of 0.8702, MAE of 0.0873, and RMSE of 0.1335. The FTC estimation method developed in this study is expected to offer advantages for application in various regions, providing fundamental data for a better understanding of carbon dynamics in urban ecosystems in the future.