• Title/Summary/Keyword: Time-series InSAR

Search Result 62, Processing Time 0.027 seconds

Time-series InSAR Analysis and Post-processing Using ISCE-StaMPS Package for Measuring Bridge Displacements

  • Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin;Kim, Young Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.527-534
    • /
    • 2020
  • This study aims to monitor the displacement of the bridges using Stanford Method for Persistent Scatterers (StaMPS) time-series Persistent Scatterer Interferometric Synthetic Aperture Radar analysis. For case study bridges: Kimdaejung bridge and Deokyang bridge, we acquired 60 and 33 Cosmo-Skymed Synthetic Aperture Radar (SAR) data over the Mokpo region and Yeosu region, respectively from 2013 to 2019. With single-look interferograms, we estimated the long-term time-series displacements over the bridges. The time-series displacements were estimated as -8.8 mm/year and -1.34 mm/year at the mid-span over the selected bridges: Kimdaejung and Deokyang bridge, respectively. This time-series displacement provides reliable and high spatial resolution information to monitor the structural behavior of the bridge for preventing structural behaviors.

Sustainable Surface Deformation Related with 2006 Augustine Volcano Eruption in Alaska Measured Using GPS and InSAR Techniques

  • Lee, Seulki;Kim, Sukyung;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.357-372
    • /
    • 2016
  • Augustine volcano, located along the Aleutian Arc, is one of the most active volcanoes in Alaska and nearby islands, with seven eruptions occurring between 1812 and 2006. This study monitored the surface displacement before and after the most recent 2006 eruption. For analysis, we conducted a time-series analysis on data observed at the permanent GPS(Global Positioning System) observation stations in Augustine Island between 2005 and 2011. According to the surface displacement analysis results based on GPS data, the movement of the surface inflation at the average speed of 2.3 cm/year three months prior to the eruption has been clearly observed, with the post-eruption surface deflation at the speed of 1.6 cm/year. To compare surface displacements measurement by GPS observation, ENVISAT(Environmental satellite) radar satellite data were collected between 2003 and 2010 and processed the SBAS(Small Baseline Subset) method, one of the time-series analysis techniques using multiple InSAR(Interferometric Synthetic Aperture Radar) data sets. This result represents 0.97 correlation value between GPS and InSAR time-series surface displacements. This research has been completed precise surface deformation using GPS and time-series InSAR methods for a detection of precursor symptom on Augustine volcano.

Monitoring of Volcanic Activity of Augustine Volcano, Alaska Using TCPInSAR and SBAS Time-series Techniques for Measuring Surface Deformation (시계열 지표변위 관측기법(TCPInSAR와 SBAS)을 이용한 미국 알라스카 어거스틴 화산활동 감시)

  • Cho, Minji;Zhang, Lei;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.21-34
    • /
    • 2013
  • Permanent Scatterer InSAR (PSInSAR) technique extracts permanent scatterers exhibiting high phase stability over the entire observation period and calculates precise time-series deformation at Permanent Scatterer (PS) points by using single master interferograms. This technique is not a good method to apply on nature environment such as forest area where permanent scatterers cannot be identified. Another muti-temporal Interferometric Synthetic Aperture Radar (InSAR), Small BAseline Subset (SBAS) technique using multi master interferograms with short baselines, can be effective to detect deformation in forest area. However, because of the error induced from phase unwrapping, the technique sometimes fails to estimate correct deformation from a stack of interferograms. To overcome those problems, we introduced new multi-temporal InSAR technique, called Temporarily Coherence Point InSAR (TCPInSAR), in this paper. This technique utilizes multi master interferograms with short baseline and without phase unwrapping. To compare with traditional multi-temporal InSAR techniques, we retrieved spatially changing deformation because PSs have been found enough in forest area with TCPInSAR technique and time-series deformation without phase unwrapping error. For this study, we acquired ERS-1 and ERS-2 SAR dataset on Augustine volcano, Alaska and detected deformation in study area for the period 1992-2005 with SBAS and TCPInSAR techniques.

The Application of InSAR Signature Time Series for Landcover Classification (InSAR Signature 시계열 분석을 통한 토지피복분류)

  • Yun, Hye Won;Choi, Yun Soo;Yoon, Ha Su;Ko, Jong Sik;Cho, Seong Kil
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Considering the wide coverage, the transparency from climate condition, Interferometric Synthetic Aperture Radar (InSAR) possesses a great potential for the landcover classification as shown in many precedent researches. In addition to the merits of InSAR products for the landcover classification, the time series analysis of InSAR pairs can provide a highly reliable basis to interpret landcover. We applied such idea with the test site in Mountain Baekdu located on the border between North Korea and China. Since it is recently noted as the potential volcanic activation site, the landcover especially the vegetation distribution information is highly essential to validate the reliability of Differential Interferometric Synthetic Aperture Radar (DInSAR) over Mt. Baekdu. The algorithms combining the auxiliary information from Moderate Resolution Imaging Spectroradiometer (MODIS) to analyze the phase coherence and backscatter coefficient of Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) was established. The results using InSAR signatures from two polarization modes of ALOS PALSAR showed high reliability for mining landcover and spatial distribution.

Comparison of SqueeSAR Analysis Method And Level Surveying for Subsidence Monitoring at Landfill Site (매립지 지반침하 모니터링을 위한 SqueeSAR 해석법과 수준측량의 비교)

  • Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.137-151
    • /
    • 2018
  • Recently, National interest has been rising due to earthquakes in Gyeongju and Pohang, disasters caused by landslides, landslides, and sinkholes around construction sites, and damage caused by disasters. SAR is able to detect ground displacement in mm for wide area, collect data through satellite, predict timeliness of crustal change by time series analysis, and reduce disaster and disaster damage. The purpose of this study is to investigate the latest SAR interference analysis technique (SqueeSAR analysis technique) of Sentinel-1A satellite (SAR sensor) of European ESA for about 3 years by selecting the 1st landfill site in the metropolitan area in Incheon, The settlement amount was calculated in a time series. Especially, in order to examine the accuracy of the subsidence and subsidence tendency by the SqueeSAR analysis method, the ground level survey was compared and analyzed for the first time in Korea. Also, the tendency of the subsidence trend was predicted by analyzing the time series and correlation trend of the subsidence for three years. Through this study, it is expected that disaster prevention and disaster prevention such as sinkhole and landslide can be utilized from time series monitoring of crustal variation of the land.

Urban Subsidence Monitoring in Ulsan City Using GACOS Based Tropospheric Delay Corrected Time-series SBAS-InSAR Technique (GACOS 모델 대기 위상 지연 보정을 활용한 SBAS-InSAR 기술 기반 울산광역시 지반 침하 탐지)

  • Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin;Lee, Jung-hoon;Song, Juyoung;Kim, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1081-1089
    • /
    • 2022
  • This study aims to investigate and monitor the ground subsidence in Ulsan city, South Korea using time-series Small Baseline Subset (SBAS)-InSAR analysis. We used 79 Sentinel-1 SAR scenes and 385 interferograms to estimate the ground displacements at Ulsan city from May 2015 and December 2021. Two subsiding regions Buk-gu and Nam-gu Samsan-dong were found with the subsidence rate of 3.44 cm/year and 1.68 cm/year. In addition, we evaluated the possibility of removing the effect of atmospheric (tropospheric delay) phase in unwrapped phase using the Zenith Total Delay (ZTD) maps from Generic Atmospheric Correction Online Service (GACOS).We found that the difference between the SBAS-InSAR ground displacements before and after GACOS ZTD correction is less than 1 mm/year in this study.

Ground Settlement Monitoring using SAR Satellite Images (SAR 위성 영상을 이용한 도심지 지반 침하 모니터링 연구)

  • Chungsik, Yoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.55-67
    • /
    • 2022
  • In this paper, fundamentals and recent development of the interferometric synthetic aperture radar, known as InSAR, technique for measuring ground deformation through satellite image analysis are presented together with case histories illustrating its applicability to urban ground deformation monitoring. A study area in Korea was selected and processed based on the muti-temporal time series InSAR analysis, namely SBAS (Small Baseline Subset)-InSAR and PS (Persistent Scatterers)-InSAR using Sentinel-1A SAR images acquired from the year 2014 onward available from European Space Agency Copernicus Program. The ground settlement of the study area for the temporal window of 2014-2022 was evaluated from the viewpoint of the applicability of the InSAR technique for urban infrastructure settlement monitoring. The results indicated that the InSAR technique can reasonably monitor long-term settlement of the study area in millimetric scale, and that the time series InSAR technique can effectively measure ground settlement that occurs over a long period of time as the SAR satellite provides images of the Korean Peninsula at regular time intervals while orbiting the earth. It is expected that the InSAR technique based on higher resolution SAR images with small temporal baseline can be a viable alternative to the traditional ground borne monitoring method for ground deformation monitoring in the 4th industrial era.

A Comparison of InSAR Techniques for Deformation Monitoring using Multi-temporal SAR (다중시기 SAR 영상을 이용한 시계열 변위 관측기법 비교 분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.143-151
    • /
    • 2010
  • We carried out studies on InSAR techniques for time-series deformation monitoring using multi-temporal SAR. The PSInSAR method using permanent scatterer is much more complicate than the SBAS because it includes many non-linear equation due to the input of wrapped phase. It is conformed the PS algorithm is very sensitive to even PSC selection. On the other hand, the SBAS method using interferogram of small baseline subset is simple but sensitive to the accuracy of unwrapped phase. The SBAS is better method for expecting not significant unwrapping error while PSInSAR is more proper method for expecting local deformation within very limited area. We used 51 ERS-1/2 SAR data during 1992-2000 over Las Vegas, USA for the comparison between PSInSAR and SBAS. Both PSInSAR and SBAS show similar ground deformation value although local deformation seems to be detected in the PSInSAR method only.

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.

Regional Scale Rice Yield Estimation by Using a Time-series of RADARSAT ScanSAR Images

  • Li, Yan;Liao, Qifang;Liao, Shengdong;Chi, Guobin;Peng, Shaolin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.917-919
    • /
    • 2003
  • This paper demonstrates that RADARSAT ScanSAR data can be an important data source of radar remote sensing for monitoring crop systems and estimation of rice yield for large areas in tropic and sub-tropical regions. Experiments were carried out to show the effectiveness of RADARSAT ScanSAR data for rice yield estimation in whole province of Guangdong, South China. A methodology was developed to deal with a series of issues in extracting rice information from the ScanSAR data, such as topographic influences, levels of agro-management, irregular distribution of paddy fields and different rice cropping systems. A model was provided for rice yield estimation based on the relationship between the backscatter coefficient of multi-temporal SAR data and the biomass of rice.

  • PDF