• Title/Summary/Keyword: Time-resolved spectroscopy

Search Result 103, Processing Time 0.019 seconds

Dual Component Analysis for In Vivo T2* Decay of Hyperpolarized 13C Metabolites

  • Joe, Eunhae;Lee, Joonsung;Lee, Hansol;Yang, Seungwook;Choi, Young-Suk;Wang, Eunkyung;Song, Ho-Taek;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Purpose: To investigate the exchange and redistribution of hyperpolarized $^{13}C$ metabolites between different pools by temporally analyzing the relative fraction of dual $T_2{^*}$ components of hyperpolarized $^{13}C$ metabolites. Materials and Methods: A dual exponential decay analysis of $T_2{^*}$ is performed for [1-$^{13}C$] pyruvate and [1-$^{13}C$] lactate using nonspatially resolved dynamic $^{13}C$ MR spectroscopy from mice brains with tumors (n = 3) and without (n = 4) tumors. The values of shorter and longer $T_2{^*}$ components are explored when fitted from averaged spectrum and temporal variations of their fractions. Results: The $T_2{^*}$ values were not significantly different between the tumor and control groups, but the fraction of longer $T_2{^*}$ [1-$^{13}C$] lactate components was more than 10% in the tumor group over that of the controls (P < 0.1). The fraction of shorter $T_2{^*}$ components of [1-$^{13}C$] pyruvate showed an increasing tendency while that of the [1-$^{13}C$] lactate was decreasing over time. The slopes of the changing fraction were steeper for the tumor group than the controls, especially for lactate (P < 0.01). In both pyruvate and lactate, the fraction of the shorter $T_2{^*}$ component was always greater than the longer $T_2{^*}$ component over time. Conclusion: The exchange and redistribution of pyruvate and lactate between different pools was investigated by dual component analysis of the free induction decay signal from hyperpolarized $^{13}C$ experiments. Tumor and control groups showed differences in their fractions rather than the values of longer and shorter $T_2{^*}$ components. Fraction changing dynamics may provide an aspect for extravasation and membrane transport of pyruvate and lactate, and will be useful to determine the appropriate time window for acquisition of hyperpolarized $^{13}C$ images.

The Effect of Iron Content on the Atomic Structure of Alkali Silicate Glasses using Solid-state NMR Spectroscopy (비정질 알칼리 규산염 원자구조의 철 함량 효과에 관한 고체 NMR 분광학 연구)

  • Kim, Hyo-Im;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.301-312
    • /
    • 2011
  • The study on the atomic structure of iron-bearing silicate glasses has significant geological implications for both diverse igneous processes on Earth surface and ultra-low velocity zones at the core-mantle boundary. Here, we report experimental results on the effect of iron content on the atomic structure in iron-bearing alkali silicate glasses ($Na_2O-Fe_2O_3-SiO_2$ glasses, up to 16.07 wt% $Fe_2O_3$) using $^{29}Si$ and $^{17}O$ solid-state NMR spectroscopy. $^{29}Si$ spin-lattice ($T_1$) relaxation time for the glasses decreases with increasing iron content due to an enhanced interaction between nuclear spin and unpaired electron in iron. $^{29}Si$ MAS NMR spectra for the glasses show a decrease in signal intensity and an increase in peak width with increasing iron content. However, the heterogeneous peak broa-dening in $^{29}Si$ MAS NMR spectra suggests the heterogeneous distribution of $Q^n$ species around iron in iron-bearing silicate glasses. While nonbridging oxygen ($Na-O-Si$) and bridging oxygen (Si-O-Si) peaks are partially resolved in $^{17}O$ MAS NMR spectrum for iron-free silicate glass, it is difficult to distinguish the oxygen clusters in iron-bearing silicate glass. The Lorentzian peak shape for $^{29}Si$ and $^{17}O$ MAS NMR spectra may reflect life-time broadening due to spin-electron interaction. These results demonstrate that solid-state NMR can be an effective probe of the detailed structure in iron-bearing silicate glasses.

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF