• Title/Summary/Keyword: Time-resolved X-ray solution scattering

Search Result 3, Processing Time 0.014 seconds

Exploring Fine Structures of Photoactive Yellow Protein in Solution Using Wide-Angle X-ray Scattering

  • Kim, Tae-Kyu;Zuo, Xiaobing;Tiede, David M.;Ihee, Hyot-Cherl
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1676-1680
    • /
    • 2004
  • We demonstrate that wide-angle X-ray scattering pattern from photoactive yellow protein (PYP) in solution using a high flux third generation synchrotron X-ray source reflects not only the overall structure, but also fine structures of the protein. X-ray scattering data from PYP in solution have been collected in q ranges from 0.02 ${\AA}^{-1}$ to 2.8 ${\AA}^{-1}$. These data are sensitive to the protein structure and consistent with the calculation based on known crystallographic atomic coordinates. Theoretical scattering patterns were also calculated for the intermediates during the photocycle of PYP to estimate the feasibility of time-resolved wide-angle X-ray scattering experiments on such proteins. These results demonstrate the possibility of using the wide-angle solution X-ray scattering as a quantitative monitor of photo-induced structural changes in PYP.

Sol-Gel Transition in Di-(2-ethylhexyl) phthalate-Plasticized Poly(vinyl chloride)

  • Lee, Chang-Hyung;Nah, Jae-Woon;Cho, Kil-Won;Kim, Seong-Hun;Hahn, Ai-Ran
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1485-1489
    • /
    • 2003
  • The gelation for di-(2-ethylhexyl) phthalate (DEHP)-plasticized poly(vinyl chloride) was studied by measuring time-resolved small-angle X-ray scattering (SAXS) and a flow of the solutions in test tube. It was found that for the gelation there were three regimes. At Regime I, the solution rapidly changed to a gel, and the SAXS intensity showed a peak and the peak intensity increased, keeping the peak angle constant. Applying the SAXS intensity to the kinetic analysis of the liquid-liquid phase separation, it was revealed that the spinodal decomposition proceeded to develop a periodic length of 29.9 nanometer in size, a hydrogen-bonding-type association in polymer rich phase followed, and then it induced fast gelation rate. At Regime II, the gelation slowly occurred and the SAXS intensity was not observed, suggesting that a homogeneous gel network was formed by a hydrogen-bonding. At regime III, the solution was a homogeneous sol.