• Title/Summary/Keyword: Time-of-flight mass spectrometer

Search Result 64, Processing Time 0.034 seconds

Pulsed-Delayed Extraction for Resolution Enhancement of Linear Time-of-Flight Mass Spectromenter in Surface-Assisted Laser Desorption/Ionization of Polypropyleneglycol (폴리프로필렌 글리콜의 표면-보조 레이저 탈착/이온화에서 선형 비행시간 질량분석기의 분해능 개선을 위한 시간 지연 추출법의 응용)

  • Kim, Jung Hwan;Kang, Wee Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.4
    • /
    • pp.328-336
    • /
    • 2000
  • The pulsed-delayed extraction (PDE) in linear time-of-flight mass spectrometer(TOF MS) is characterized on the enhancement of resolution, mass-depth of focus and effect of instrumentahan 2000. The ion signals separate isotopically by up to molecular weight of 2500 in instrumental broadening of 5 ns, which is a good agreement with calculation. The fragmentation paths of PPG can be sug-gested by the isotopica distributions of fragment series produced when PPG desorbed from graphite surface.

  • PDF

Optimization of Reflectron for Kinetic and Mechanistic Studies with Multiplexed Multiple Tandem (MSn) Time-of-flight Mass Spectrometry

  • Bae, Yong-Jin;Yoon, So-Hee;Moon, Jeong-Hee;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.92-99
    • /
    • 2010
  • Photoexcitation of a precursor ion inside a cell floated at high voltage installed in a tandem time-of-flight (TOF) mass spectrometer provides triple tandem mass spectrometric information and allows kinetic and mechanistic studies. In this work, the factors affecting, or downgrading, the performance of the technique were identified. Ion-optical and computational analyses showed that an optimum instrument could be designed by utilizing a reflectron with linear-plus-quadratic potential inside. Theoretical predictions were confirmed by tests with instruments built with different ion-optical layout. With optimized instruments, masses of intermediate ions in the consecutive dissociation of a precursor ion could be determined with the maximum error of $\pm5$ Da. We also observed excellent agreement in dynamical parameters (critical energy and entropy) for the dissociation of a model peptide ion determined by instruments with different ion-optical layout operated under optimum conditions. This suggests that these parameters can be determined reliably by the kinetic method developed previously when properly designed and operated tandem TOF instruments are used.

Application of Malononitrile Derivatization Method for Structural Glycomics Study in Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry

  • Ahn, Yeong-Hee;Yoo, Jong-Shin
    • Journal of Photoscience
    • /
    • v.8 no.2
    • /
    • pp.83-86
    • /
    • 2001
  • Structural analyses of oligosaccharide-malononitrile derivatives were conducted by matrix-assisted laser desorption/ionization post-source decay (MALDI-PSD) analysis in positive ion mode. The malononitrile derivatives of oligosaccharides, which were developed for highly sensitive detection of multi-component oligosaccharides by negative ion electrospray ionization mass spectrometry (ESI MS), were detected by positive-ion MALDI with the detection limit of 2 pmol level from the crude derivatization sample. The used matrix affected drastically the analytical results of oligosaccharide-malononitrile derivative by matrix-assisted laser desoprtion/ionization mass spectrometry (MALDI MS). The malononitrile derivatization of oligosaccharide also affect the patterns of MALDI-PSD spectra and give much more structural information than the free oligosaccharide.

  • PDF

A study of 2-color 3-step selective photoionization for mercury atoms (수은 원자의 2-색 3-단계 선택적 광이온화 연구)

  • 노시표;한재민;정도영;차형기;이종민
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.117-122
    • /
    • 1992
  • 2-color 3-step resonance photoionization scheme has been used for selective photoionization of mercury isotopes. The levels of $6^3P_1$ and $6^1D_2$ were selected as intermediate excited levels, and the laser wavelengths used were 253.7 nm for the first excitation and 313.2 nm for the second excitation and ionization. Selective excitation for individual isotope was realized in the first excitation step with a single-longitudinal-mode (SLM) dye laser rrf ~700 MHz linewidth. For the second excitation and ionization step, a dye laser with relatively large linewidth of ~5 GHz was used. In this work the effect of laser intensities on isotope selectivity was analyzed from the mass spectra obtained in real time from the time-of-flight mass spectrometer.

  • PDF

Study on Air Quality in the Case of Chemical Fires Using Proton Transfer Reaction-Time of Flight Mass Spectrometer (양자전이 비행시간 질량분석기를 이용한 화학물질 화재 발생 시 대기질 조사 연구)

  • Kim, So-Young;Cho, Dong-Ho;Park, Jungmin
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.84-90
    • /
    • 2018
  • Chemical accidents occur in various forms, such as explosions, leaks, spills, and fires. In particular, chemical accidents caused by fires seriously affect the surrounding air environment due to soot, causing anxiety to the residents. Therefore, it is important to identify the causative substances quickly and examine the influence of air quality in the surrounding area. In this paper, proton transfer reaction-time of flight mass spectrometry(PTR-ToFMS) was used to identify the causative material in a fire and monitor the air quality in real time. This analyzer is capable of real-time analysis with a rapid response time without sample collection and pretreatment. In addition, it is suitable for quantitative and qualitative analysis of most volatile organic compounds with high hydrogen affinity, to identify the cause of fire and examine the influence of ambient air. In April 2018, when a local fire occurred, methanol, acetone, and methyl ethyl ketone were the main causative agents in PTR-ToFMS.

Comparison of rosiglitazone metabolite profiles in rat plasma between intraperitoneal and oral administration and identifcation of a novel metabolite by liquid chromatography-triple time of flight mass spectrometry (액체크로마토그라피-삼중비행시간질량분석기를 사용한 rosiglitazone의 복강 및 경구투여 후 대사체 비교 분석)

  • Park, Minho;Na, Sook-Hee;Lee, Hee-Joo;Shin, Byung-Hee;An, Byung-Jun;Shin, Young G.
    • Analytical Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.132-138
    • /
    • 2015
  • Rosiglitazone metabolites in rat plasma were analyzed after intraperitoneal and oral administration to rats. Seven metabolites (M1-M7) were detected in rat plasma (IP and PO), and the structures were confirmed using liquid chromatography-triple time of flight (TOF) mass spectrometry; as a result, the most abundant metabolite was M5, a de-methylated rosiglitazone. Other minor in vivo metabolites were driven from monooxygenation and demethylation (M2), thiazolidinedione ring-opening (M1, M3), mono-oxygenation (M4, M7), and mono-oxygenation followed by sulfation (M6). Among them, M1 was found to be a 3-{p-[2-(N-methyl-N-2-pyridylamino)ethoxy]phenyl}-2-(methylsulfinyl)propionamide, which is a novel metabolite of rosiglitazone. There was no significant difference in the metabolic profiles resulting from the two administrations. The findings of this study provide the first comparison of circulating metabolite profiles of rosiglitazone in rat after IP and PO administration and a novel metabolite of rosiglitazone in rat plasma.

Emission Characteristics of VOCs Distributions in Semiconductor Workplace (반도체 작업환경의 VOCs 농도분포 특성)

  • Lee, Jeong Joo
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.503-509
    • /
    • 2018
  • In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was used for the continuous monitoring of Volatile Organic Compounds (VOCs) emitted from semiconductor workplace such as photolithography (PHOTO), flat panel display (FPD), organic light emitting diode (OLED), etching (WET) process. The averaged VOCs mixing ratio in the such workplace, PHOTO was 6.5 ppm, FPH was 6.4 ppm, WET was 2.0 ppm and OLED was 1.3 ppm, respectively. The abundance of VOCs in the workplace were methyl ethyl ketone (MEK) with 2.8 ppm (69%) and acetaldehyde with 0.5 ppm (13.2%). Depending on the semiconductor process characteristics, various VOCs have been observed in the workplace. The VOCs mixing ratio are lower than the workplace regulation standard (TWA), it is necessary to continuously monitor and effectively manage these VOCs.

Time Resolced Molecular Beam Characteristic in a Pulsed Supersonic Jet

  • Gang, Wi Gyeong;Kim, Eun Jeong;Choe, Chang Ju;Jeong, Gwang U;Jeong, Gyeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.238-243
    • /
    • 1995
  • A pulsed molecular beam source having short pulse duration (typically 70 ${\mu}s)$ and narrow velocity distribution (${\Delta}$v/v=8% for helium) has been costructed utilizing a commercial fuel injector. Beam characteristics of helium and ammonia seeded in helium expansions are accomplished by the use of an electron impact time-or-flight mass spectrometer. The comparisons between experimental data and theoretical calculations show that the proper beam speed is important to predict the evolution of stream temperature and valve shutter function. The decreasing tendency of pulse duration with increasing cluster size leads to the conclusion that the cluster beam property is described as a function of cluster mass and disinct cluster temperature.

Development of chemical ionization method in a GC-TOF mass spectrometer for accurate mass and isotope ratio measurement (Accurate mass 및 isotope ratio 측정을 위한 GC-TOF 질량분석기에서의 화학적 이온화방법)

  • Chung, Joo-Hee;Na, Yun-Cheol;Hwang, Geum-Sook;Shin, Jeoung-Hwa;Ahn, Yun-Gyong
    • Analytical Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • An accurate mass and isotope ratio were determined using a gas chromatography/time of flight mass spectrometer in CI positive mode for the identification of unknown metabolites. High mass tune was used to improve the ion intensity of $[M+H]^+$. Chromatographic resolution and dynamic range enhancement were performed to obtain more reliable accurate masses and correct isotope abundance ratios. Average absolute errors of mass and isotope ratios for 24 reference metabolite -TMS (trimethylsilyl) derivatives were 6.8 ppm, 1.5% of (M+1/M ratio) and 1.7% of (M+2/M ratio), respectively. The correct formulas of twenty one compound were retrieved within top-2 hit from the heuristic algorithm for elemental composition using each accurate mass and isotope abundance ratio.

Electron-Impact Ionization Mass Spectroscopic Studies of Acetylene and Mixed Acetylene-Ammonia Clusters as a Structure Probe

  • Sung Seen Choi;Kwang Woo Jung;Kyung Hoon Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.482-486
    • /
    • 1992
  • Ion-molecule reactions of acetylene and mixed acetylene-ammonia cluster ions are studied using an electron impact time-of-flight mass spectrometer. The present results clearly demonstrate that $(C_2H_2)_n^+$ cluster ion distribution represents a distinct magic number of n=3. The mass spectroscopic evidence for the enhanced structural stabilities of $[C_6H_4{\cdot}(NH_3)_m]^+$ (m=0-8) ions is also found along with the detection of mixed cluster $[(C_2H_2)_n{\cdot}(NH_3)_m]^+$ ions, which gives insight into the feasible structure of solvated ions. This is rationalized on the basis of the structural stability for acetylene clusters and the dissociation dynamics of the complex ion under the presence of solvent molecules.