• Title/Summary/Keyword: Time-frequency image

Search Result 508, Processing Time 0.03 seconds

New In-Orbit Pixel Correction Method

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.604-607
    • /
    • 2005
  • All CCD pixels do not react uniformly even if the light of same radiance enters into the camera. This comes from the different camera optical characteristics, the read-out characteristics, the pixel own characteristics and so on. Usually, the image data of satellite camera can be corrected by the various image-processing methods in the ground. However, sometimes, the in-orbit correction is needed to get the higher quality image. Especially high frequency pixel correction in the middle of in-orbit mission is needed because the in-orbit data compression with the high frequency loss is essential to transmit many data in real time due to the limited RF bandwidth. In this case, this high frequency correction can prevent have to have any unnecessary high frequency loss. This in-orbit correction can be done by the specific correction table, which consists of the gain and the offset correction value for each pixel. So, it is very important to get more accurate correction table for good correction results. This paper shows the new algorithm to get accurate pixel correction table. This algorithm shall be verified theoretically and also verified with the various simulation and the test results.

  • PDF

Application of Compressive Sensing to Two-Dimensional Radar Imaging Using a Frequency-Scanned Microstrip Leaky Wave Antenna

  • Yang, Shang-Te;Ling, Hao
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.113-119
    • /
    • 2017
  • The application of compressive sensing (CS) to a radar imaging system based on a frequency-scanned microstrip leaky wave antenna is investigated. First, an analytical model of the system matrix is formulated as the basis for the inversion algorithm. Then, $L_1-norm$ minimization is applied to the inverse problem to generate a range-azimuth image of the scene. Because of the antenna length, the near-field effect is considered in the CS formulation to properly image close-in targets. The resolving capability of the combined frequency-scanned antenna and CS processing is examined and compared to results based on the short-time Fourier transform and the pseudo-inverse. Both simulation and measurement data are tested to show the system performance in terms of image resolution.

Optical Image Switching System based on BPEJTC (BPEJTC를 이용한 광 영상 스위칭 시스템)

  • 이상이;이승현;양훈기;김은수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.10
    • /
    • pp.51-63
    • /
    • 1995
  • In this paper, a new real-time optical image switching system based on the phase-typed BPEJTC is suggested. The phase filter mask which has the arbitrary position mapping function between input and output planes is constructed by using the modified JTPS of the BPEJTC. Then, the input image is convolved with this phase filter mask in the spatial frequency domain and through further Fourier transform the input image is switched to the new positions in the output correlation plane where the correlation peaks are occurred. And, based on the computer simulation results, the practical optical switched to the new positions in the output correlation plane where the correlation peaks are occurred. And, based on the computer simulation results, the practical optical switching system is opto-digitally constructed and through some experiments on image switching the possiblity of real-time implementation of the multiple optical image switching system by using the BPEJTC is suggeste.

  • PDF

Performance Evaluation of Medical Image Transmission System using TH UWB-IR Technology

  • Lee, Yang-Sun;Kang, Heau-Jo
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.3
    • /
    • pp.97-100
    • /
    • 2006
  • In this paper, the transmission service for medical image is proposed via IEEE 802.15.4a on WPAN environment. Also, transmission and receiving performance of medical image using TH UWB-IR system is evaluated on indoor multi-path fading environment. On the results, the proposed scheme can solve the problem of interference from the medical equipment in same frequency band, and minimize the loss due to the indoor multi-path fading environment. Therefore, the transmission with low power usage is possible.

Wavelet Packet Image Coder Using Coefficients Partitioning For Remote Sensing Images (위성 영상을 위한 계수분할 웨이블릿 패킷 영상 부호화 알고리즘에 관한 연구)

  • 한수영;조성윤
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.359-367
    • /
    • 2002
  • In this paper, a new embedded wavelet packet image coder algorithm is proposed for an effective image coder using correlation between partitioned coefficients. This new algorithm presents parent-child relationship for reducing image reconstruction error using relations between individual frequency sub-bands. By parent-child relationship, every coefficient is partitioned and encoded for the zerotree data structure. It is shown that the proposed wavelet packet image coder algorithm achieves low bit rates and rate-distortion. It also demonstrates higher PSNR under the same bit rate and an improvement in image compression time. The perfect rate control is compared with the conventional method. These results show that the encoding and decoding processes of the proposed coder are simpler and more accurate than the conventional ones for texture images that include many mid and high-frequency elements such as aerial and satellite photograph images. The experimental results imply the possibility that the proposed method can be applied to real-time vision system, on-line image processing and image fusion which require smaller file size and better resolution.

An Experimental Study on the Frequency Characteristics of Cloud Cavitation on Naval Ship Rudder (함정용 방향타에서 발생하는 구름(cloud) 캐비테이션의 주파수 특성에 대한 실험적 연구)

  • Paik, Bu-Geun;Ahn, Jong-Woo;Jeong, Hongseok;Seol, Hanshin;Song, Jae-Yeol;Ko, Yoon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • In this study, the amount and frequency characteristics of cloud cavitation formed on a navy ship rudder were investigated through cavitation image processing technique and cavitation noise analysis. A high-speed camera with high time resolution was used to observe the cavitation on a full-spade rudder. The deflection angle range of the full-spade rudder was set to 8 to 15 degrees so that cloud cavitation was generated on the rudder surface. For images taken at 104 fps (frame per second), reference values for detecting cavitation were defined and detected in Red, Green, Blue and Hue, Saturation, Lightness color spaces to quantitatively analyze the amount of cavitation. Intrinsic frequency characteristics of cloud cavitation were detected from the time series data of the amount of cavitation. The frequency characteristics of cloud cavitation obtained by using the image processing technique were found to be the same through the analysis of the noise signal measured by the hydrophone installed on the hull above the rudder, and its peak value was in the frequency band of 30~60Hz.

In DCT,Image Data Compression via Directional Zonal Filters (DCT 변환상에서 방향성 Zonal 필터를 이용한 화상 데이터 압축)

  • 정동범;김해수;조승환;이근영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.2
    • /
    • pp.172-179
    • /
    • 1991
  • In this paper we have proposed an efficient coding algorithm using directional filtering. First an image is transformed by using DCT which has better energy compaction and then the transformed image is divided into a low frequency component and several high frequency components. The transformed coefficients of each parts are transmitted respectively by using huffman code and these are transformed inversely at receiver. For the directional components total edge images are reconstructed at zero crossing points. We are able to reduce the amount of data by getting of complex component and making directional angles 90. As a results, this proposed method is better than that of Kunt in respect of processing time and memories. We have 38dB of image quality with objective measurement of PSNR and 0.26bpp of compression ratio which is acceptable.

  • PDF

Automatic Image Mosaicking

  • Song Nak-hyun;Cho Woosug;Cho Seong-Ik;Yun YoungBo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.121-124
    • /
    • 2004
  • This paper proposed the method of creating image mosaic in automated fashion. It is well known that geometric and radiometric balance in adjacent images should be maintained in mosaicking process. The seam line to minimize geometric discontinuity was extracted using Minimum Absolute­Gray-Difference Sum considering constraint condition in search width. To maintain the radiometric balance of images acquired at different time, we utilized Match Cumulative Frequency, Match Mean and Standard Deviation and Hue Adjustment algorithm. The mosaicked image prepared by the proposed method was compared with those of commercial software. Experiments show that seam lines were extracted significantly well from roads, rivers. ridgelines etc. and Match Cumulative Frequency algorithm was performed pretty good in histogram matching

  • PDF

Research of Phase Correlation Method for Identifying Quantitative Similarity in Adjacent Real-time Streaming Frame

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.157-157
    • /
    • 2017
  • To minimize the damage by wild birds and acquire the benefits such as protection against weeds and maintenance of water content in soil, the mulching black color vinyl after seeding should be carried out. Non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. Non-linear integral interpolation was one of method for analyzing the frequency using the normalization image and then arbitrarily increasing the limited data value of $16{\times}4pixels$ in one frame. It was a method to relatively reduce the size of overlapping pixels by arbitrarily increasing the limited data value. The splitted frames into 0.1 units instead of 1 pixel can propose more than 10 times more accurate and original method than the existing correction method. The non-integral calibration method was conducted by applying the subdivision method to the pixels to find the optimal correction resolution based on the first reversed frequency. In order to find a correct resolution, the expected location of the first crop was indicated on near pixel 4 in the inversion frequency. For the most optimized resolution, the pixel was divided by 0.4 pixel instead of one pixel to find out where the lowest frequency exists.

  • PDF

The Application of Dynamic Acquisition with Motion Correction for Static Image (동적 영상 획득 방식을 이용한 정적 영상의 움직임 보정)

  • Yoon, Seok-Hwan;Seung, Jong-Min;Kim, Kye-Hwan;Kim, Jae-Il;Lee, Hyung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2010
  • Purpose: The static image of nuclear medicine study should be acquired without a motion, however, it is difficult to acquire static image without movement for the serious patients, advanced aged patients. These movements cause decreases in reliability for quantitative and qualitative analysis, therefore re-examination was inevitable in the some cases. Consequently, in order to improve the problem of motion artifacts, the authors substituted the dynamic acquisition technique for the static acquisition, using motion correction. Materials and Methods: A capillary tube and IEC body phantom were used. First, the static image was acquired for 60 seconds while the dynamic images were acquired with a protocol, 2 sec/frame${\times}$30 frames, under the same parameter and the frames were summed up into one image afterwards. Also, minimal motion and excessive motion were applied during the another dynamic acquisition and the coordinate correction was applied towards X and Y axis on the frames where the motion artifact occurred. But the severe blurred images were deleted. Finally, the resolution and counts were compared between the static image and the summed dynamic images which before and after applying motion correction, and the signal of frequency was analysed after frequency spatial domain was transformed into 2D FFT. Supplementary examination, the blind test was performed by the nuclear medicine department staff. Results: First, the resolution in the static image and summed dynamic image without motion were 8.32 mm, 8.37 mm on X-axis and 8.30 mm, 8.42 mm on Y-axis, respectively. The counts were 484 kcounts, 485 kcounts each, so there was nearly no difference. Secondly, the resolution in the image with minimal motion applying motion correction was 8.66 mm on X-axis, 8.85 mm on Y-axis and had 469 kcounts while the image without motion correction was 21.81 mm, 24.02 mm and 469 kcounts in order. So, this shows the image with minimal motion applying motion correction has similar resolution with the static image. Lastly, the resolution in the images with excessive motion applying motion correction were 9.09 mm on X-axis, 8.83 mm on Y-axis and had 469 kcounts while the image without motion correction was 47.35 mm, 40.46 mm and 255 kcounts in order. Although there was difference in counts because of deletion of blurred frames, we could get similar resolution. And when the image was transformed into frequency, the high frequency was decreased by the movement. However, the frequency was improved again after motion correction. In the blind test, there was no difference between the image applying motion correction and the static image without motion. Conclusion: There was no significant difference between the static image and the summed dynamic image. This technique can be applied to patients who may have difficulty remaining still during the imaging process, so that the quality of image can be improved as well as the reliance for analysis of quantity. Moreover, the re-examination rate will be considerably decreased. However, there is a limit of motion correction, more time will be required to successfully image the patients applying motion correction. Also, the decrease of total counts due to deletion of the severe blurred images should be calculated and the proper number of frames should be acquired.

  • PDF