• 제목/요약/키워드: Time-frequency feature extraction

검색결과 84건 처리시간 0.022초

웨이블릿 변환과 인공신경망을 이용한 결함분류 프로그램 개발과 용접부 결함 AE 신호에의 적용 연구 (Development of Defect Classification Program by Wavelet Transform and Neural Network and Its Application to AE Signal Deu to Welding Defect)

  • 김성훈;이강용
    • 비파괴검사학회지
    • /
    • 제21권1호
    • /
    • pp.54-61
    • /
    • 2001
  • 웨이블릿 변환과 인공신경망을 이용하여 AE 신호를 분류하는 소프트웨어 패키지를 개발하였다. 웨이블릿 변환으로는 연속 웨이블릿 변환과 이산 웨이블릿 변환을 모두 고려하였으며, 인공신경망의 모델로는 오류 역전파 인공신경망을 사용하였다. 분류에 사용된 AE 신호는 용접부에 인공결함을 가진 시편의 3점 굽힘시험에서 발생한 신호이다. 개발된 소프트웨어 패키지를 이용하여 이 신호를 웨이블릿 변환시켜 생성된 시간-주파수 평면상에서 특징값을 추출하고 이를 인공신경망에 학습하여 인공신경망 분류기를 설계하고 검증하였다. 본 연구에서 개발된 소프트웨어 패키지를 이용한 AE 신호 분류법이 유용함을 보이고, 또한 연속 웨이블릿 변환과 이산 웨이블릿 변환에 의한 분류 결과를 비교하였다.

  • PDF

딥러닝 기반 음향 신호 대역 확장 시스템 (Deep Learning based Raw Audio Signal Bandwidth Extension System)

  • 김윤수;석종원
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1122-1128
    • /
    • 2020
  • 대역 확장(Bandwidth Extension)이란 채널 용량 부족 혹은 이동통신 기기에 탑재된 코덱의 특성으로 인해 부호화 및 복호화 과정에서 대역 제한(band limited)되거나 손상된 협대역 신호(NB, Narrow Band)를 복원, 확장하여 광대역 신호(WB, Wide Band)로 전환 시켜주는 것을 의미한다. 대역 확장 연구는 주로 음성 신호 위주로 대역 복제(SBR, Spectral Band Replication), IGF(Intelligent Gap Filling)과 같이 고대역을 주파수 영역으로 변환하여 복잡한 특징 추출 과정을 거쳐 이를 바탕으로 사라지거나 손상된 고대역을 복원한다. 본 논문에서는 딥러닝 모델 중 오토인코더(Autoencoder)를 바탕으로 1차원 합성곱 신경망(CNN, Convolutional Neural Network)들의 잔차 연결을 활용하여 복잡한 사전 전처리 과정 없이 일정한 길이의 시간 영역 신호를 입력시켜 대역 확장 시킨 음향 신호를 출력하는 모델을 제안한다. 또한 음성 영역에 제한되지 않는 음악을 포함한 여러 종류의 음원을 포함하는 데이터셋에 훈련시켜도 손상된 고대역을 복원할 수 있음을 확인하였다.

Deep learning-based anomaly detection in acceleration data of long-span cable-stayed bridges

  • Seungjun Lee;Jaebeom Lee;Minsun Kim;Sangmok Lee;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.93-103
    • /
    • 2024
  • Despite the rapid development of sensors, structural health monitoring (SHM) still faces challenges in monitoring due to the degradation of devices and harsh environmental loads. These challenges can lead to measurement errors, missing data, or outliers, which can affect the accuracy and reliability of SHM systems. To address this problem, this study proposes a classification method that detects anomaly patterns in sensor data. The proposed classification method involves several steps. First, data scaling is conducted to adjust the scale of the raw data, which may have different magnitudes and ranges. This step ensures that the data is on the same scale, facilitating the comparison of data across different sensors. Next, informative features in the time and frequency domains are extracted and used as input for a deep neural network model. The model can effectively detect the most probable anomaly pattern, allowing for the timely identification of potential issues. To demonstrate the effectiveness of the proposed method, it was applied to actual data obtained from a long-span cable-stayed bridge in China. The results of the study have successfully verified the proposed method's applicability to practical SHM systems for civil infrastructures. The method has the potential to significantly enhance the safety and reliability of civil infrastructures by detecting potential issues and anomalies at an early stage.

피사계 심도가 낮은 이미지에서 웨이블릿 기반의 자동 ROI 추출 및 마스크 생성 (An Automatic ROI Extraction and Its Mask Generation based on Wavelet of Low DOF Image)

  • 박순화;서영건;이부권;강기준;김호용;김형준;김상복
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.93-101
    • /
    • 2009
  • 본 논문에서는 웨이블릿 변환 된 고주파 서브밴드들의 에지 정보를 이용하여 관심 객체 영역을 고속으로 자동 검출해주는 새로운 알고리즘을 제안하였다. 제안된 방법에서는 에지정보를 이용하여 블록단위의 4-방향 객체 윤곽탐색 알고리즘(4-DOBS)을 수행하여 관심객체를 검출한다. 전체 이미지는 $64{\times}64$또는 $32{\times}32$ 크기의 코드 블록으로 먼저 나누어지고, 각 코드 블록 내에 에지들이 있는지 없는지에 따라 관심 코드블록 또는 배경이 된다. 4-방향은 바깥쪽에서 이미지의 중앙으로 탐색하고, 피사계 심도가 낮은 이미지는 중앙으로 갈수록 에지가 발견된다는 특징을 이용한다. 에지를 모두 발견하면 내부의 이미지 블록은 모두 관심영역으로 간주하고, 이 블록들은 빠르게 마스킹되어 서버로 전송되어 동적 ROI를 제공한다. 이는 기존 방법들의 문제점이였던 복잡한 필터링 과정과 영역병합 문제로 인한 높은 계산 복잡도를 상당히 개선시킬 수 있었고, 블록 단위의 처리로 인하여 실시간 처리를 요하는 응용에서도 적용 가능하였다.