• 제목/요약/키워드: Time-frequency feature extraction

검색결과 84건 처리시간 0.029초

The Important Frequency Band Selection and Feature Vecotor Extraction System by an Evolutional Method

  • Yazama, Yuuki;Mitsukura, Yasue;Fukumi, Minoru;Akamatsu, Norio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2209-2212
    • /
    • 2003
  • In this paper, we propose the method to extract the important frequency bands from the EMG signal, and for generation of feature vector using the important frequency bands. The EMG signal is measured with 4 sensor and is recorded as 4 channel’s time series data. The same frequency bands from 4 channel’s frequency components are selected as the important frequency bands. The feature vector is calculated by the function formed using the combination of selected same important frequency bands. The EMG signals acquired from seven wrist motion type are recognized by changing into the feature vector formed. Then, the extraction and generation is performed by using the double combination of the genetic algorithm (GA) and the neural network (NN). Finally, in order to illustrate the effectiveness of the proposed method, computer simulations are done.

  • PDF

활어 개체어의 광대역 음향산란신호로부터 어종식별을 위한 시간-주파수 특징 추출 (Time-Frequency Feature Extraction of Broadband Echo Signals from Individual Live Fish for Species Identification)

  • 이대재;강희영;박용예
    • 한국수산과학회지
    • /
    • 제49권2호
    • /
    • pp.214-223
    • /
    • 2016
  • Joint time-frequency images of the broadband acoustic echoes of six fish species were obtained using the smoothed pseudo-Wigner-Ville distribution (SPWVD). The acoustic features were extracted by changing the sliced window widths and dividing the time window by a 0.02-ms interval and the frequency window by a 20-kHz bandwidth. The 22 spectrum amplitudes obtained in the time and frequency domains of the SPWVD images were fed as input parameters into an artificial neural network (ANN) to verify the effectiveness for species-dependent features related to fish species identification. The results showed that the time-frequency approach improves the extraction of species-specific features for species identification from broadband echoes, compare with time-only or frequency-only features. The ANN classifier based on these acoustic feature components was correct in approximately 74.5% of the test cases. In the future, the identification rate will be improved using time-frequency images with reduced dimensions of the broadband acoustic echoes as input for the ANN classifier.

On Wavelet Transform Based Feature Extraction for Speech Recognition Application

  • Kim, Jae-Gil
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권2E호
    • /
    • pp.31-37
    • /
    • 1998
  • This paper proposes a feature extraction method using wavelet transform for speech recognition. Speech recognition system generally carries out the recognition task based on speech features which are usually obtained via time-frequency representations such as Short-Time Fourier Transform (STFT) and Linear Predictive Coding(LPC). In some respects these methods may not be suitable for representing highly complex speech characteristics. They map the speech features with same may not frequency resolutions at all frequencies. Wavelet transform overcomes some of these limitations. Wavelet transform captures signal with fine time resolutions at high frequencies and fine frequency resolutions at low frequencies, which may present a significant advantage when analyzing highly localized speech events. Based on this motivation, this paper investigates the effectiveness of wavelet transform for feature extraction of wavelet transform for feature extraction focused on enhancing speech recognition. The proposed method is implemented using Sampled Continuous Wavelet Transform (SCWT) and its performance is tested on a speaker-independent isolated word recognizer that discerns 50 Korean words. In particular, the effect of mother wavelet employed and number of voices per octave on the performance of proposed method is investigated. Also the influence on the size of mother wavelet on the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is compared with the most prevalent conventional method, MFCC (Mel0frequency Cepstral Coefficient). The experiments show that the recognition performance of the proposed method is better than that of MFCC. But the improvement is marginal while, due to the dimensionality increase, the computational loads of proposed method is substantially greater than that of MFCC.

  • PDF

Optimal EEG Feature Extraction using DWT for Classification of Imagination of Hands Movement

  • Chum, Pharino;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.786-791
    • /
    • 2011
  • An optimal feature selection and extraction procedure is an important task that significantly affects the success of brain activity analysis in brain-computer interface (BCI) research area. In this paper, a novel method for extracting the optimal feature from electroencephalogram (EEG) signal is proposed. At first, a student's-t-statistic method is used to normalize and to minimize statistical error between EEG measurements. And, 2D time-frequency data set from the raw EEG signal was extracted using discrete wavelet transform (DWT) as a raw feature, standard deviations and mean of 2D time-frequency matrix were extracted as a optimal EEG feature vector along with other basis feature of sub-band signals. In the experiment, data set 1 of BCI competition IV are used and classification using SVM to prove strength of our new method.

Emotion recognition from speech using Gammatone auditory filterbank

  • 레바부이;이영구;이승룡
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.255-258
    • /
    • 2011
  • An application of Gammatone auditory filterbank for emotion recognition from speech is described in this paper. Gammatone filterbank is a bank of Gammatone filters which are used as a preprocessing stage before applying feature extraction methods to get the most relevant features for emotion recognition from speech. In the feature extraction step, the energy value of output signal of each filter is computed and combined with other of all filters to produce a feature vector for the learning step. A feature vector is estimated in a short time period of input speech signal to take the advantage of dependence on time domain. Finally, in the learning step, Hidden Markov Model (HMM) is used to create a model for each emotion class and recognize a particular input emotional speech. In the experiment, feature extraction based on Gammatone filterbank (GTF) shows the better outcomes in comparison with features based on Mel-Frequency Cepstral Coefficient (MFCC) which is a well-known feature extraction for speech recognition as well as emotion recognition from speech.

지진파 분류를 위한 주성분 기반 주파수-시간 특징 추출 (Principal component analysis based frequency-time feature extraction for seismic wave classification)

  • 민정기;김관태;구본화;이지민;안재광;고한석
    • 한국음향학회지
    • /
    • 제38권6호
    • /
    • pp.687-696
    • /
    • 2019
  • 기존의 지진파 분류 특징은 강진에 초점이 맞추어져 있어서 미소지진과 같은 지진파는 다소 적합하지 않다. 본 연구에서는 강진과 더불어 미소지진, 인공지진, 잡음 분류에 적합한 특징 추출을 위해 주파수-시간 공간 내에서 히스토그램과 주성분 기반 특징 추출방법을 제안한다. 제안된 방법은 지진파의 주파수 관련 정보와 시간 관련 정보를 결합하는 방법을 적용한 히스토그램 기반 특징 추출방법과 주성분 기반 특징 추출방법을 이용하여 지진(강진, 미소지진, 인공지진)과 잡음, 미소지진과 잡음, 미소지진과 인공지진을 이진 분류한다. 2017년~2018년 최근 국내지진 자료와 분류 성능을 토대로 제안한 특징 추출방식의 효용성을 비교 평가한다.

수동 소나 표적의 식별을 위한 지능형 특징정보 추출 및 스코어링 알고리즘 (Intelligent Feature Extraction and Scoring Algorithm for Classification of Passive Sonar Target)

  • 김현식
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.629-634
    • /
    • 2009
  • 실시간 시스템 적용에 있어서, 수동 소나 표적의 식별을 위한 특징정보 추출 및 스코어링 알고리즘은 다음과 같은 문제점들을 가지고 있다. 즉, 주파수 스펙트럼으로부터 PSR(Propeller Shaft Rate) 및 BR(Blade rate) 등의 특징정보를 실시간으로 구별하는 것은 매우 어렵기 때문에 정확하고 효율적인 특징정보 추출(extraction)법을 요구한다. 또한, 추출된 특징정보들로 구성된 식별 DB(DataBase)는 잡음 및 불완전한 구성을 갖기 때문에 강인하고 효과적인 특징정보 스코어링(scoring)법을 요구한다. 나아가, 구조와 파라메터에 있어서 용이한 설계 절차를 요구한다. 이러한 문제들을 해결하기 위해서 진화 전략(ES : Evolution Strategy) 및 퍼지(fuzzy) 이론을 이용하는 지능형 특징정보 추출 및 스코어링 알고리즘이 제안되었다. 제안된 알고리즘의 성능을 검증하기 위해서는 수동 소나 표적의 실시간 식별이 수행되었다. 시뮬레이션 결과는 제안된 알고리즘이 실시간 시스템 적용에서 존재하는 문제점들을 효과적으로 해결할 수 있음을 보여준다.

FPGA-Based Hardware Accelerator for Feature Extraction in Automatic Speech Recognition

  • Choo, Chang;Chang, Young-Uk;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • 제13권3호
    • /
    • pp.145-151
    • /
    • 2015
  • We describe in this paper a hardware-based improvement scheme of a real-time automatic speech recognition (ASR) system with respect to speed by designing a parallel feature extraction algorithm on a Field-Programmable Gate Array (FPGA). A computationally intensive block in the algorithm is identified implemented in hardware logic on the FPGA. One such block is mel-frequency cepstrum coefficient (MFCC) algorithm used for feature extraction process. We demonstrate that the FPGA platform may perform efficient feature extraction computation in the speech recognition system as compared to the generalpurpose CPU including the ARM processor. The Xilinx Zynq-7000 System on Chip (SoC) platform is used for the MFCC implementation. From this implementation described in this paper, we confirmed that the FPGA platform is approximately 500× faster than a sequential CPU implementation and 60× faster than a sequential ARM implementation. We thus verified that a parallelized and optimized MFCC architecture on the FPGA platform may significantly improve the execution time of an ASR system, compared to the CPU and ARM platforms.

Ensemble convolutional neural networks for automatic fusion recognition of multi-platform radar emitters

  • Zhou, Zhiwen;Huang, Gaoming;Wang, Xuebao
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.750-759
    • /
    • 2019
  • Presently, the extraction of hand-crafted features is still the dominant method in radar emitter recognition. To solve the complicated problems of selection and updation of empirical features, we present a novel automatic feature extraction structure based on deep learning. In particular, a convolutional neural network (CNN) is adopted to extract high-level abstract representations from the time-frequency images of emitter signals. Thus, the redundant process of designing discriminative features can be avoided. Furthermore, to address the performance degradation of a single platform, we propose the construction of an ensemble learning-based architecture for multi-platform fusion recognition. Experimental results indicate that the proposed algorithms are feasible and effective, and they outperform other typical feature extraction and fusion recognition methods in terms of accuracy. Moreover, the proposed structure could be extended to other prevalent ensemble learning alternatives.

Classification of Induction Machine Faults using Time Frequency Representation and Particle Swarm Optimization

  • Medoued, A.;Lebaroud, A.;Laifa, A.;Sayad, D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.170-177
    • /
    • 2014
  • This paper presents a new method of classification of the induction machine faults using Time Frequency Representation, Particle Swarm Optimization and artificial neural network. The essence of the feature extraction is to project from faulty machine to a low size signal time-frequency representation (TFR), which is deliberately designed for maximizing the separability between classes, a distinct TFR is designed for each class. The feature vectors size is optimized using Particle Swarm Optimization method (PSO). The classifier is designed using an artificial neural network. This method allows an accurate classification independently of load level. The introduction of the PSO in the classification procedure has given good results using the reduced size of the feature vectors obtained by the optimization process. These results are validated on a 5.5-kW induction motor test bench.