• Title/Summary/Keyword: Time-frequency Representation

Search Result 87, Processing Time 0.03 seconds

Hydroacoustic Records and Numerical Models of the Source Mechanisms from the First Historical Eruption of Anatahan Volcano, Mariana Islands

  • Park M.;Dziak R.P.;Matsumoto H.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.232-237
    • /
    • 2004
  • Anatahan Volcano in the Commonwealth of the Northern Mariana Islands (CNMI) erupted for the first time in recorded history on 10 May 2003. The underwater acoustic records of earthquakes, explosions, and tremor produced during the eruption were recorded on a sound-channel hydrophone deployed in February 2003. Acoustic propagation models show the seismic to acoustic conversion at Anatahan is particularly efficient, aided by the slope of the seamount toward the hydrophone. The hydrophone records confirm the onset of earthquake activity at 01:53Z on 10 May, as well as the onset (at ${\~}$06:20Z) of continuous, low-frequency (5-40 Hz) acoustic energy that is likely volcanic tremor related to magma intrusion. The hydrophone recorded a total of 458 earthquakes associated with the eruption. To predict the character of acoustic signals generated from Anatahan, we developed a moment-tensor representation of a volcano-seismic source that is governed by the geometry of the source and the physical properties of the magma. A buried magmatic pipe model was adopted, and numerically modeling source parameters such as the pipe radius and magma viscosity enable us to grasp the inward nature of Anatahan Volcano.

  • PDF

A New CMOS RF Model for RF IC Design (RF IC 설계를 위한 새로운 CMOS RF 모델)

  • 박광민
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.555-559
    • /
    • 2003
  • In this paper, a new CMOS RF model for RF IC design including the capacitance effect, the skin effect, and the proximity effect between metal lines on the Si surface is proposed for tile first time for accurately predicting the RF behavior of CMOS devices. The capacitances between metal lines on the Si surface are modeled with the layout. And the skin effect is modeled with a parallel branch added in equivalent circuit of metal line. The proximity effect is modeled by adding the mutual inductance between cross-coupled inductances in the ladder circuit representation. Compared to the BSIM 3v3. the proposed RF model shows good agreements with the measured data and shows well the frequency dependent behavior of devices in GHz ranges.

Nonlinear Structural Safety Assessment under Dynamic Excitation Using SFEM (추계론적 유한 요소법을 이용한 동하중을 받는 비선형 구조물의 안전성 평가)

  • Huh, Jungwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.373-384
    • /
    • 2000
  • To assess the safety of nonlinear steel frame structures subjected to short duration dynamic loadings, especially seismic loading, a nonlinear time domain reliability analysis procedure is proposed in the context of the stochastic finite element concept. In the proposed algorithm, the finite element formulation is combined with concepts of the response surface method, the first order reliability method, and the iterative linear interpolation scheme. This leads to the stochastic finite element concept. Actual earthquake loading time-histories are used to excite structures, enabling a realistic representation of the loading conditions. The assumed stress-based finite element formulation is used to increase its efficiency. The algorithm also has the potential to evaluate the risk associated with any linear or nonlinear structure that can be represented by a finite element algorithm subjected to seismic loading or any short duration dynamic loading. The algorithm is explained with help of an example and verified using the Monte Carlo simulation technique.

  • PDF

Inverse Estimation of Geoacoustic Parameters in Shallow Water Using tight Bulb Sound Source (천해환경에서 전구음원을 이용한 지음향인자의 역추정)

  • 한주영;이성욱;나정열;김성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2004
  • An inversion method is presented for the determination of the compressional wave speed, compressional wave attenuation, thickness of the sediment layer and density as a function of depth for a horizontally stratified ocean bottom. An experiment for estimating those properties was conducted in the shallow water of South Sea in Korea. In the experiment, a light bulb implosion and the propagating sound were measured using a VLA (vertical line array). As a method for estimating the geoacoustic properties, a coherent broadband matched field processing combined with Genetic Algorithm was employed. When a time-dependent signal is very short, the Fourier transform results are not accurate, since the frequency components are not locatable in time and the windowed Fourier transform is limited by the length of the window. However, it is possible to do this using the wavelet transform a transform that yields a time-frequency representation of a signal. In this study, this transform is used to identify and extract the acoustic components from multipath time series. The inversion is formulated as an optimization problem which maximizes the cost function defined as a normalized correlation between the measured and modeled signals in the wavelet transform coefficient vector. The experiments and procedures for deploying the light bulbs and the coherent broadband inversion method are described, and the estimated geoacoustic profile in the vicinity of the VLA site is presented.

Efficient Representation and Matching of Object Movement using Shape Sequence Descriptor (모양 시퀀스 기술자를 이용한 효과적인 동작 표현 및 검색 방법)

  • Choi, Min-Seok
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.391-396
    • /
    • 2008
  • Motion of object in a video clip often plays an important role in characterizing the content of the clip. A number of methods have been developed to analyze and retrieve video contents using motion information. However, most of these methods focused more on the analysis of direction or trajectory of motion but less on the analysis of the movement of an object itself. In this paper, we propose the shape sequence descriptor to describe and compare the movement based on the shape deformation caused by object motion along the time. A movement information is first represented a sequence of 2D shape of object extracted from input image sequence, and then 2D shape information is converted 1D shape feature using the shape descriptor. The shape sequence descriptor is obtained from the shape descriptor sequence by frequency transform along the time. Our experiment results show that the proposed method can be very simple and effective to describe the object movement and can be applicable to semantic applications such as content-based video retrieval and human movement recognition.

Phenomenology of nonlinear aeroelastic responses of highly deformable joined wings

  • Cavallaro, Rauno;Iannelli, Andrea;Demasi, Luciano;Razon, Alan M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.125-168
    • /
    • 2015
  • Dynamic aeroelastic behavior of structurally nonlinear Joined Wings is presented. Three configurations, two characterized by a different location of the joint and one presenting a direct connection between the two wings (SensorCraft-like layout) are investigated. The snap-divergence is studied from a dynamic perspective in order to assess the real response of the configuration. The investigations also focus on the flutter occurrence (critical state) and postcritical phenomena. Limit Cycle Oscillations (LCOs) are observed, possibly followed by a loss of periodicity of the solution as speed is further increased. In some cases, it is also possible to ascertain the presence of period doubling (flip-) bifurcations. Differences between flutter (Hopf's bifurcation) speed evaluated with linear and nonlinear analyses are discussed in depth in order to understand if a linear (and thus computationally less intense) representation provides an acceptable estimate of the instability properties. Both frequency- and time-domain approaches are compared. Moreover, aerodynamic solvers based on the potential flow are critically examined. In particular, it is assessed in what measure more sophisticated aerodynamic and interface models impact the aeroelastic predictions. When the use of the tools gives different results, a physical interpretation of the leading mechanism generating the mismatch is provided. In particular, for PrandtlPlane-like configurations the aeroelastic response is very sensitive to the wake's shape. As a consequence, it is suggested that a more sophisticate modeling of the wake positively impacts the reliability of aerodynamic and aeroelastic analysis. For SensorCraft-like configurations some LCOs are characterized by a non-synchronous motion of the inner and outer portion of the lower wing: the wing's tip exhibits a small oscillation during the descending or ascending phase, whereas the mid-span station describes a sinusoidal-like trajectory in the time-domain.

Lofargram analysis and identification of ship noise based on Hough transform and convolutional neural network model (허프 변환과 convolutional neural network 모델 기반 선박 소음의 로파그램 분석 및 식별)

  • Junbeom Cho;Yonghoon Ha
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.19-28
    • /
    • 2024
  • This paper proposes a method to improve the performance of ship identification through lofargram analysis of ship noise by applying the Hough Transform to a Convolutional Neural Network (CNN) model. When processing the signals received by a passive sonar, the time-frequency domain representation known as lofargram is generated. The machinery noise radiated by ships appears as tonal signals on the lofargram, and the class of the ship can be specified by analyzing it. However, analyzing lofargram is a specialized and time-consuming task performed by well-trained analysts. Additionally, the analysis for target identification is very challenging because the lofargram also displays various background noises due to the characteristics of the underwater environment. To address this issue, the Hough Transform is applied to the lofargram to add lines, thereby emphasizing the tonal signals. As a result of identification using CNN models on both the original lofargrams and the lofargrams with Hough transform, it is shown that the application of the Hough transform improves lofargram identification performance, as indicated by increased accuracy and macro F1 scores for three different CNN models.

Empirical Orthogonal Function Analysis of Surface Pressure, Sea Surface Temperature and Winds over the East Sea of the Korea (Japan Sea) (한국 동해에서의 해면기압, 해수면온도와 해상풍의 경험적 직교함수 분석)

  • NA Jung-Yul;HAN Snag-Kyu;SEO Jang-Won;NOH Yi-Gn;KANG In-Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.188-202
    • /
    • 1997
  • The seasonal variability of the sea surface winds over the last Sea of Korea (Japan Sea) is investigated by means of empirical orthogonal function (EOF) analysis. The combined representation of fields of three climatic variables by empirical orthogonal functions is discussed. The eigenvectors are derived from daily sea level pressure, wind speed and 10-day mean sea surface temperature (SST) during 15 years $(1978\~1992)$. The spatial patterns of the mean pressure are characterized by the high pressure in the western part and the low pressure in the eastern part. The spatial distribution of the standard deviation (SD) of pressure are characterized by max SD of 6.6 mb near the Vladivostok, and minima along the coast of the Japan. In Vladivostok, the maxima of SD of SST and south-north wind (WV) were also occurred. The representation of fields of individual meteorological variables by EOF shows that the first mode of the west-east wind (WU) explain over $47.3\%$ of the variance and the second mode of WU represents $30\%$. Especially, the first mode of the WV explain $70.9\%$ of the variance and their time series coefficients show 1-cpy, 0.5-cpy frequency spectrum. The spatial distribution of the first mode eigenvectors of SST are characterized by maximum near Vladivostok. The combined representation of fields of several variables (pressure, wind, SST) reveals that the first mode magnitudes of the variance of the combined eigenvectors (WU-PR) are increased. By means of this result, the 1-year peak and the 6-months peak are remarkable. In the three combined patterns (wind, pressure, SST), the second mode of the eigenvector (wind) is affected by the SST. Their time coefficients of the first mode show noticeable 1-year peak. The spectral analysis of the second mode shows broad seasonal signal with the period of 4-months and a significant peak of variability at 3-month period.

  • PDF

Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic Algorithm in Computational Grid

  • Kaiwartya, Omprakash;Prakash, Shiv;Abdullah, Abdul Hanan;Hassan, Ahmed Nazar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2821-2839
    • /
    • 2015
  • Energy consumption by large computing systems has become an important research theme not only because the sources of energy are depleting fast but also due to the environmental concern. Computational grid is a huge distributed computing platform for the applications that require high end computing resources and consume enormous energy to facilitate execution of jobs. The organizations which are offering services for high end computation, are more cautious about energy consumption and taking utmost steps for saving energy. Therefore, this paper proposes a scheduling technique for Minimizing Energy consumption using Adapted Genetic Algorithm (MiE-AGA) for dependent tasks in Computational Grid (CG). In MiE-AGA, fitness function formulation for energy consumption has been mathematically formulated. An adapted genetic algorithm has been developed for minimizing energy consumption with appropriate modifications in each components of original genetic algorithm such as representation of chromosome, crossover, mutation and inversion operations. Pseudo code for MiE-AGA and its components has been developed with appropriate examples. MiE-AGA is simulated using Java based programs integrated with GridSim. Analysis of simulation results in terms of energy consumption, makespan and average utilization of resources clearly reveals that MiE-AGA effectively optimizes energy, makespan and average utilization of resources in CG. Comparative analysis of the optimization performance between MiE-AGA and the state-of-the-arts algorithms: EAMM, HEFT, Min-Min and Max-Min shows the effectiveness of the model.

A Study on Audio-Visual Interactive Art interacting with Sound -Focused on 21C Boogie Woogie (사운드에 반응하는 시청각적인 인터랙티브 아트에 관한 연구)

  • Son, Jin-Seok;Yang, Jee-Hyun;Kim, Kyu-Jung
    • Cartoon and Animation Studies
    • /
    • s.35
    • /
    • pp.329-346
    • /
    • 2014
  • Art is the product from the combination of politics, economy, and social and cultural aspects. Recent development of digital media has affected on the expansion of visual expression in art. Digital media allow artists to use sound and physical interaction as well as image as an plastic element for making a work of art. Also, digital media help artists create an interactive, synaesthetic and visual perceptive environment by combining viewers' physical interaction with the reconstruction of image, sound, light, and among other plastic elements. This research was focused on the analysis of the relationship between images in art work and the viewer and data visualization using sound from the perspective of visual perception. This research also aimed to develop an interactive art by visualizing physical data with sound generating from outer stimulus or the viewer. Physical data generating from outer sound can be analyzed in various aspects. For example, Sound data can be analyzed and sampled within pitch, volume, frequency, and etc. This researcher implemented a new form of media art through the visual experiment of LED light triggered by sound frequency generating from viewers' voice or outer physical stimulus. Also, this researcher explored the possibility of various visual image expression generating from the viewer's reaction to illusionary characteristics of light(LED), which can be transformed within external physical data in real time. As the result, this researcher used a motif from Piet Mondrian's Broadway Boogie Woogie in order to implement a visual perceptive interactive work reacting with sound. Mondrian tried to approach at the essence of visual object by eliminating unnecessary representation elements and simplifying them in painting and making them into abstraction consisting of color, vertical and horizontal lines. This researcher utilized Modrian's simplified visual composition as a representation metaphor in oder to transform external sound stimulus into the element of light(LED), and implemented an environment inducing viewers' participation, which is a dynamic composition maximizing a synaesthetic expression, differing from Modrian's static composition.