• 제목/요약/키워드: Time-discretization

검색결과 259건 처리시간 0.025초

탄성기반에서 과도 열탄성 접촉에 대한 열 접촉 저항의 영향 (Effect of Thermal Contact Resistance on Transient Thermoelastic Contact for an Elastic Foundation)

  • 장용훈;이승욱
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.833-840
    • /
    • 2006
  • The paper presents a numerical solution to the problem of a hot rigid indenter sliding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed, regardless of the thermal contact resistance. However the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady state, the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient, the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger numbers of small contact areas are established, unlit eventually the accuracy of the algorithm is limited by the discretization used.

Effect of Nonuniform Vertical Grid on the Accuracy of Two-Dimensional Transport Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kim, Hyun-Ju;Kang, Hyun-Gyu
    • 한국지구과학회지
    • /
    • 제39권4호
    • /
    • pp.317-326
    • /
    • 2018
  • Effect of the nonuniform grid on the two-dimensional transport equation was investigated in terms of theoretical analysis and finite difference method (FDM). The nonuniform grid having a typical structure of the numerical weather forecast model was incorporated in the vertical direction, while the uniform grid was used in the zonal direction. The staggered and non-staggered grid were placed in the vertical and zonal direction, respectively. Time stepping was performed with the third-order Runge Kutta scheme. An error analysis of the spatial discretization on the nonuniform grid was carried out, which indicated that the combined effect of the nonuniform grid and advection velocity produced either numerical diffusion or numerical adverse-diffusion. An analytic function is used for the quantitative evaluation of the errors associated with the discretized transport equation. Numerical experiments with the non-uniformity of vertical grid were found to support the analysis.

Laguerre Polynomial을 이용한 저수지군의 최적제어 (Optimal Control of Multireservoirs Using Discrete Laguerre Polynomials)

  • 이재형;김민환
    • 대한토목학회논문집
    • /
    • 제11권4호
    • /
    • pp.91-102
    • /
    • 1991
  • 저수지군을 최적으로 운영하려고 할때 일반적으로 동적계획법을 이용하는데 저수지 수의 증가와 변수의 이산화에 따라 계산 용량이 지수적으로 팽창하는 결점을 내포하고 있다. 이 문제를 해결하기 위해서 본 논문에서는 저수지 시스템 변수가 LP(Laguerre Polynomial)로 표현된 새로운 모형 개발을 시도하였다. 새로운 계획모형은 QP(Quadratic Programming) 형태이다. 이 모형의 해는 확장 라그란지안 곱수 방법(Augmented Lagrangian Multiplier Method)의 비선형계획법에 의해서 QP해를 구하였다. 그 결과 저수 수준은 기존의 결과보다 높게 유지하려는 경향을 보였으며, 평가된 편익 값은 다른 방법들과 비슷한 값이었다.

  • PDF

시간에 따른 탄성지지 열탄성 접촉에 대한 열접촉저항의 영향 (Effects of Thermal Contact Resistance on Transient Thermoelastic Contacts for an Elastic Foundation)

  • 장용훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.330-333
    • /
    • 2005
  • The paper presents a numerical solution to the problem of a hot rigid indenter siding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed regardless of the thermal contact resistance. However, the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady-state the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger number of small contact areas are established, until eventually the accuracy of the algorithm is limited by the discretization used.

  • PDF

GPU를 이용한 효율적인 비압축성 자유표면유동 해석 (AN EFFICIENT INCOMPRESSIBLE FREE SURFACE FLOW SIMULATION USING GPU)

  • 홍환의;안형택;명훈주
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.35-41
    • /
    • 2012
  • This paper presents incompressible Navier-Stokes solution algorithm for 2D Free-surface flow problems on the Cartesian mesh, which was implemented to run on Graphics Processing Units(GPU). The INS solver utilizes the variable arrangement on the Cartesian mesh, Finite Volume discretization along Constrained Interpolation Profile-Conservative Semi-Lagrangian(CIP-CSL). Solution procedure of incompressible Navier-Stokes equations for free-surface flow takes considerable amount of computation time and memory space even in modern multi-core computing architecture based on Central Processing Units(CPUs). By the recent development of computer architecture technology, Graphics Processing Unit(GPU)'s scientific computing performance outperforms that of CPU's. This paper focus on the utilization of GPU's high performance computing capability, and presents an efficient solution algorithm for free surface flow simulation. The performance of the GPU implementations with double precision accuracy is compared to that of the CPU code using an representative free-surface flow problem, namely. dam-break problem.

저속 유동 계산의 수렴성에 미치는 특성 조건수의 영향 I : 오일러 방정식 (Effects of Characteristic Condition Number on Convergence in Calculating Low Mach Number Flows, I : Euler Equations)

  • 이상현
    • 한국항공우주학회지
    • /
    • 제36권2호
    • /
    • pp.115-122
    • /
    • 2008
  • 예조건화 오일러 방정식의 수렴 특성에 미치는 특성 조건수의 영향을 조사하였다. 그리고 Choi와 Merkle 예조건화를 적용한 경우와 온도 예조건화를 적용한 경우의 수렴 특성을 분석하였다. 공간차분을 위해 예조건화 Roe의 FDS 기법을 적용하였고, 시간적분을 위해 예조건화 LU-SGS 기법을 적용하였다. 지배방정식의 수렴 특성은 특성 조건수에 크게 영향을 받는 것으로 나타났으며, 최적의 특성 조건수가 존재하는 것으로 나타났다. 그리고 최적의 특성 조건수는 Choi 와 Merkle 예조건화를 적용한 경우와 온도 예조건화를 적용한 경우가 서로 다른 것으로 나타났다.

저속 유동 계산의 수렴성에 미치는 특성 조건수의 영향 II : 나비어스톡스 방정식 (Effects of Characteristic Condition Number on Convergence in Calculating Low Mach Number Flows, II : Navier-Stokes Equations)

  • 이상현
    • 한국항공우주학회지
    • /
    • 제36권2호
    • /
    • pp.123-130
    • /
    • 2008
  • 예조건화 나비어스톡스 방정식의 수렴 특성에 미치는 특성 조건수의 영향을 조사하였다. Choi와 Merkle 예조건화를 적용한 경우와 온도 예조건화를 적용한 경우의 수렴 특성을 분석하였다. 공간차분을 위해 예조건화 Roe의 FDS 기법을 적용하였고, 시간적분을 위해 LU-SGS 기법을 적용하였다. 나비어스톡스 방정식의 수렴 특성은 특성 조건수에 크게 영향을 받으며, 최적의 특성 조건수가 존재하는 것을 보였다. 그리고 점성 유동의 최적 특성 조건수는 비점성 유동에 비해 큰 것으로 나타났다.

충격하중에 의해 크랙 주위에 형성되는 응력장에 관한 수치해석적 연구 (Numerical Analysis of Stress Field around Crack Tip under Impact Load)

  • 황갑운;조규종
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.450-460
    • /
    • 1996
  • To investigate the effect of stress wave propagation for crack tip, impact responses of two-dimensional plates with oblique cracks are investigated by a numerical method. In the numerical analysis, the finite element method is used in space domain discretization and the Newmark constant acceleration algorithm is used in time integration. According to the numerical results from the impact response analysis. it is found that the stress fields are bisected at the crack surface and the parts of stress intensity are moved along the crack face. The crack tip stress fields are yaried rapidly. The magnitude of crack tip stress fields are converted to dynamic stress intensity factor. Dynamic sress intensity factor appears when the stress wave has reached at the crack tip and the aspect of change of dynamic stress intensity factor is shown to be the same as the part of the flow of stress intensity.

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy;Onate, Eugenio
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.1-31
    • /
    • 2008
  • The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

Hydrodynamic analysis of floating structures with baffled ARTs

  • Kim, San;Lee, Kang-Heon
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.1-15
    • /
    • 2018
  • In ocean industry, free surface type ART (Anti Roll tank) system has been widely used to suppress the roll motion of floating structures. In those, various obstacles have been devised to obtain the sufficient damping and to enhance the controllability of freely rushing water inside the tank. Most of previous researches have paid on the development of simple mathematical formula for coupled ship-ARTs analysis although other numerical and experimental approaches exist. Little attention has been focused on the use of 3D panel method for preliminary design of free surface type ART despite its advantages in computational time and general capacity for hydrodynamic damping estimation. This study aims at developing a potential theory based hydrodynamic code for the analysis of floating structure with baffled ARTs. The sloshing in baffled tanks is modeled through the linear potential theory with FE discretization and it coupled with hydrodynamic equations of floating structures discretized by BEM and FEM, resulting in direct coupled FE-BE formulation. The general capacity of proposed formulation is emphasized through the coupled hydrodynamic analysis of floating structure and sloshing inside baffled ARTs. In addition, the numerical methods for natural sloshing frequency tuning and estimation of hydrodynamic damping ratio of liquid sloshing in baffled tanks undergoing wave exiting loads are developed through the proposed formulation. In numerical examples, effects of natural frequency tuning and baffle ratios on the maximum and significant roll motions are investigated.