• Title/Summary/Keyword: Time-dependent Monte Carlo

Search Result 61, Processing Time 0.021 seconds

Sensitivity of a control rod worth estimate to neutron detector position by time-dependent Monte Carlo simulations of the rod drop experiment

  • Jong Min Park;Cheol Ho Pyeon;Hyung Jin Shim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.916-921
    • /
    • 2024
  • The control rod worth sensitivity to the neutron detector position in the rod drop experiment is studied by the time-dependent Monte Carlo (TDMC) neutron transport calculations for AGN-201K educational reactor and the Kyoto University Critical Assembly. The TDMC simulations of the rod drop experiments are conducted by the Seoul National University Monte Carlo (MC) code, McCARD, yielding time-dependent neutron densities at detector positions. The detector-position-dependent results of the total control rod worth calculated by the extrapolation, the integral counting, and the inverse methods are compared with the numerical reference using the MC eigenvalue calculations and the experimental results. From these comparisons, it is observed that the total control rod worth can be estimated with a considerable difference depending on the detector position through the rod drop experiment. The proposed TDMC simulation of the rod drop experiment can be applied for searching a better detector position or quantifying a bias for the control rod worth measurement.

Advances for the time-dependent Monte Carlo neutron transport analysis in McCARD

  • Sang Hoon Jang;Hyung Jin Shim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2712-2722
    • /
    • 2023
  • For an accurate and efficient time-dependent Monte Carlo (TDMC) neutron transport analysis, several advanced methods are newly developed and implemented in the Seoul National University Monte Carlo code, McCARD. For an efficient control of the neutron population, a dynamic weight window method is devised to adjust the weight bounds of the implicit capture in the time bin-by-bin TDMC simulations. A moving geometry module is developed to model a continuous insertion or withdrawal of a control rod. Especially, the history-based batch method for the TDMC calculations is developed to predict the unbiased variance of a bin-wise mean estimate. The developed methods are verified for three-dimensional problems in the C5G7-TD benchmark, showing good agreements with results from a deterministic neutron transport analysis code, nTRACER, within the statistical uncertainty bounds. In addition, the TDMC analysis capability implemented in McCARD is demonstrated to search the optimum detector positions for the pulsed-neutron-source experiments in the Kyoto University Critical Assembly and AGN201K.

Time-dependent analysis of cable trusses -Part II. Simulation-based reliability assessment

  • Kmet, S.;Tomko, M.;J., Brda
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.171-193
    • /
    • 2011
  • One of the possible alternatives of simulation-based time-dependent reliability assessment of pre-stressed biconcave and biconvex cable trusses, the Monte Carlo method, is applied in this paper. The influence of an excessive deflection of cable truss (caused by creep of cables and rheologic changes) on its time-dependent serviceability is investigated. Attention is given to the definition of the basic random variables and their statistical functions (basic, mutually dependent random variables such as the pre-stressing forces of the bottom and top cable, structural geometry, the Young's modulus of elasticity of the cables, and the independent variables, such as permanent load, wind, snow and thermal actions). Then, the determination of the response of the cable truss to the loading effects, and the definition of the limiting values considering serviceability of the structure are performed. The potential of the method, using direct Monte Carlo technique for simulation-based time-dependent reliability assessment as a powerful tool, is emphasized. Results obtained by the First order reliability method (FORM) are compared with those obtained by the Monte Carlo simulation technique.

Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark

  • Shaukat, Nadeem;Ryu, Min;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.920-927
    • /
    • 2017
  • With ever-advancing computer technology, the Monte Carlo (MC) neutron transport calculation is expanding its application area to nuclear reactor transient analysis. Dynamic MC (DMC) neutron tracking for transient analysis requires efficient algorithms for delayed neutron generation, neutron population control, and initial condition modeling. In this paper, a new MC steady-state simulation method based on time-dependent MC neutron tracking is proposed for steady-state initial condition modeling; during this process, prompt neutron sources and delayed neutron precursors for the DMC transient simulation can easily be sampled. The DMC method, including the proposed time-dependent DMC steady-state simulation method, has been implemented in McCARD and applied for two-dimensional core kinetics problems in the time-dependent neutron transport benchmark C5G7-TD. The McCARD DMC calculation results show good agreement with results of a deterministic transport analysis code, nTRACER.

Calculation of kinetic parameters βeff and L with modified open source Monte Carlo code OpenMC(TD)

  • Romero-Barrientos, J.;Dami, J.I. Marquez;Molina F.;Zambra, M.;Aguilera, P.;Lopez-Usquiano, F.;Parra, B.;Ruiz, A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.811-816
    • /
    • 2022
  • This work presents the methodology used to expand the capabilities of the Monte Carlo code OpenMC for the calculation of reactor kinetic parameters: effective delayed neutron fraction βeff and neutron generation time L. The modified code, OpenMC(Time-Dependent) or OpenMC(TD), was then used to calculate the effective delayed neutron fraction by using the prompt method, while the neutron generation time was estimated using the pulsed method, fitting Λ to the decay of the neutron population. OpenMC(TD) is intended to serve as an alternative for the estimation of kinetic parameters when licensed codes are not available. The results obtained are compared to experimental data and MCNP calculated values for 18 benchmark configurations.

Clustering and traveling waves in the Monte Carlo criticality simulation of decoupled and confined media

  • Dumonteil, Eric;Bruna, Giovanni;Malvagi, Fausto;Onillon, Anthony;Richet, Yann
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1157-1164
    • /
    • 2017
  • The Monte Carlo criticality simulation of decoupled systems, as for instance in large reactor cores, has been a challenging issue for a long time. In particular, due to limited computer time resources, the number of neutrons simulated per generation is still many order of magnitudes below realistic statistics, even during the start-up phases of reactors. This limited number of neutrons triggers a strong clustering effect of the neutron population that affects Monte Carlo tallies. Below a certain threshold, not only is the variance affected but also the estimation of the eigenvectors. In this paper we will build a time-dependent diffusion equation that takes into account both spatial correlations and population control (fixed number of neutrons along generations). We will show that its solution obeys a traveling wave dynamic, and we will discuss the mechanism that explains this biasing of local tallies whenever leakage boundary conditions are applied to the system.

Development of transient Monte Carlo in a fissile system with β-delayed emission from individual precursors using modified open source code OpenMC(TD)

  • J. Romero-Barrientos;F. Molina;J.I. Marquez Damian;M. Zambra;P. Aguilera;F. Lopez-Usquiano;S. Parra
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1593-1603
    • /
    • 2023
  • In deterministic and Monte Carlo transport codes, b-delayed emission is included using a group structure where all of the precursors are grouped together in 6 groups or families, but given the increase in computational power, nowadays there is no reason to keep this structure. Furthermore, there have been recent efforts to compile and evaluate all the available b-delayed neutron emission data and to measure new and improved data on individual precursors. In order to be able to perform a transient Monte Carlo simulation, data from individual precursors needs to be implemented in a transport code. This work is the first step towards the development of a tool to explore the effect of individual precursors in a fissile system. In concrete, individual precursor data is included by expanding the capabilities of the open source Monte Carlo code OpenMC. In the modified code - named Time Dependent OpenMC or OpenMC(TD)- time dependency related to β-delayed neutron emission was handled by using forced decay of precursors and combing of the particle population. The data for continuous energy neutron cross-sections was taken from JEFF-3.1.1 library. Regarding the data needed to include the individual precursors, cumulative yields were taken from JEFF-3.1.1 and delayed neutron emission probabilities and delayed neutron spectra were taken from ENDF-B/VIII.0. OpenMC(TD) was tested in a monoenergetic system, an energy dependent unmoderated system where the precursors were taken individually or in a group structure, and in a light-water moderated energy dependent system, using 6-groups, 50 and 40 individual precursors. Neutron flux as a function of time was obtained for each of the systems studied. These results show the potential of OpenMC(TD) as a tool to study the impact of individual precursor data on fissile systems, thus motivating further research to simulate more complex fissile systems.

The Prediction of Failure Probability of Bridges using Monte Carlo Simulation and Lifetime Functions (몬테칼로법과 생애함수를 이용한 교량의 파괴확률예측)

  • Seung-Ie Yang
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.116-122
    • /
    • 2003
  • Monte Carlo method is one of the powerful engineering tools especially to solve the complex non-linear problems. The Monte Carlo method gives approximate solution to a variety of mathematical problems by performing statistical sampling experiments on a computer. One of the methods to predict the time dependent failure probability of one of the bridge components or the bridge system is a lifetime function. In this paper, FORTRAN program is developed to predict the failure probability of bridge components or bridge system by using both system reliability and lifetime function. Monte Carlo method is used to generate the parameters of the lifetime function. As a case study, the program is applied to the concrete-steel bridge to predict the failure probability.

FURTHER EVALUATION OF A STOCHASTIC MODEL APPLIED TO MONOENERGETIC SPACE-TIME NUCLEAR REACTOR KINETICS

  • Ha, Pham Nhu Viet;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.523-530
    • /
    • 2011
  • In a previous study, the stochastic space-dependent kinetics model (SSKM) based on the forward stochastic model in stochastic kinetics theory and the Ito stochastic differential equations was proposed for treating monoenergetic space-time nuclear reactor kinetics in one dimension. The SSKM was tested against analog Monte Carlo calculations, however, for exemplary cases of homogeneous slab reactors with only one delayed-neutron precursor group. In this paper, the SSKM is improved and evaluated with more realistic and complicated cases regarding several delayed-neutron precursor groups and heterogeneous slab reactors in which the extraneous source or reactivity can be introduced locally. Furthermore, the source level and the initial conditions will also be adjusted to investigate the trends in the variances of the neutron population and fission product levels across the reactor. The results indicate that the improved SSKM is in good agreement with the Monte Carlo method and show how the variances in population dynamics can be controlled.

Reliability Assessment for Corroded Pipelines by Separable Monte Carlo Method (Separable Monte Carlo 방법을 적용한 부식배관 신뢰도평가)

  • Lee, Jin-Han;Jo, Young-Do;Kim, Lae Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.81-86
    • /
    • 2015
  • A deterministic stress-based methodology has traditionally been applied in pipeline design. Meanwhile, reliability based design and assessment (RBDA) methodology has been extensively applied in offshore or nuclear structures. Lately, the release of ISO standard on reliability based limit state methods for pipelines ISO16708 indicates that the RBDA methodology is one of the newest directions of natural gas pipeline design method. This paper presents a case study of the RBDA procedure for predicting the time-dependent failure probability of pipelines with corrosion defects, where separable Monte Carlo (SMC) method is applied in the reliability estimation for corroded pipeline instead of traditional, crude Monte Carlo(CMC) Method. The result shows the SMC method take advantage of improving accuracy in reliability calculation.