• Title/Summary/Keyword: Time-delay estimation

Search Result 411, Processing Time 0.027 seconds

A Study on the Modeling of Network Time Delary (네트워크 시간지연 모델링에 관한 연구)

  • Baek, Soon-Pill;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2338-2340
    • /
    • 2001
  • Recently the control using internet is investigated to realize the remote control independent of place and platform. But this approach also has several problems caused by the irregular network time delay between the server and client. The experiment results using least square estimation are presented to show the effectiveness of the proposed algorithm.

  • PDF

Accuracy Enhancement for UWB Indoor Positioning Using Ray Tracing (광선 추적법에 의한 초광대역 실내 위치인식의 성능 개선 방법)

  • Jo, Yung-Hoon;Lee, Joon-Yong;Ha, Dong-Heon;Kang, Shin-Hoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.921-926
    • /
    • 2006
  • The Presence of a line-of-sight(LoS) blockage can degrade the UWB positioning accuracy for two reasons. Firstly, it makes estimation of the time of arrival(ToA) of the direct path signal difficult by complicating the multipath structure of the propagation channel. Secondly, the higher dielectric constant of the LoS blocking material than that of free space introduces excess propagation delay which will bias the range estimation. In this paper, methods based on ray tracing to reduce the ranging error resulting from the second reason are Posed. We take two different approaches; a statistical approach and a map-aided method. In the statistical approach, we establish a conditional distribution of the excess propagation delay caused by LoS blockages using a ray tracing technique. The lo6wer bound of the ranging performance based on this model is estimated. Ine ray tracing method is also used for the map-aided ToA positioning approach. UWB propagation measurement data taken in an office environment is used to examine the performance of this method.

High-Precision Ranging Scheme based on Multipath Delay Analysis in IR-UWB systems (IR-UWB 시스템에서 다중경로 지연시간 분석을 통한 고 정밀 거리추정)

  • Jeon, In-Ho;Kim, Young-Ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.778-785
    • /
    • 2010
  • This paper proposes a high-precision ranging scheme based on channel estimation technique and multipath delay analysis in IR-UWB systems. When the IR-UWB signal is transmitted and received, the high-precision ranging is estimated with the time-of-arrival information of the signal. In the proposed scheme, the channel estimation process with the minimum mean square error technique or zero forcing technique is performed and the overlapped multipath within the pulse is analyzed with matrix pencil (MP) algorithm to achieve the ranging accuracy of centimeters. The performance of proposed scheme is evaluated with various IEEE 802.15.4a channel models and the relationship between the ranging performance and the computational complexity is analyzed in terms of the MP parameter values.

Teleoperatoin System Control using a Robust State Estimation in Networked Environment (네트웍 환경에서의 강건상태추정을 이용한 원격조작시스템 제어)

  • Jin, Tae-Seok;Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.746-753
    • /
    • 2008
  • In this paper, we introduce the improved control method are communicated between a master and a slave robot in the teleoperation systems. When the master and slave robots are located in different places, time delay is unavoidable under the network environment and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The time delay may cause instability in teleoperation systems especially if those systems include haptic feedback. This paper presents a control scheme based on the estimator with virtual master model in teleoperation systems over the network. As the behavior of virtual model is tracking the one of master model, the operator can control real master robot by manipulating the virtual robot. And LQG/LTR scheme was adopted for the compensation of un-modeled dynamics. The approach is based on virtual master model, which has been implemented on a robot over the network. Its performance is verified by the computer simulation and the experiment.

Performance Improvements of DFSA(Dynamic Frame Slotted Aloha) Algorithm through Estimation of Intial frame Size (초기 프레임 크기 예측을 통한 DFSA(Dynamic Frame Slotted Aloha) 알고리즘 성능 개선)

  • Lee, Kang-Won;Lee, Moon-Hyung;Lee, Hyun-Kyo;Lim, Kyoung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1517-1530
    • /
    • 2017
  • Traditional anti-collision algorithms determine slot size of initial frame based on the information of number of collision slots, idle slots, and success slots. Since there is no information about collision at the beginning of tag information collection, traditional anti-collision algorithms can not determine the initial frame size. Considering that performance of anti-collision algorithm is very sensitive to initial slot size traditional anti-collision algorithms need some improvements. In this study two methods are proposed to determine slot size of initial frame efficiently, through which we can improve the performance of dynamic frame slotted aloha algorithm. To verify the performance of proposed algorithms, 2.4GHz RFID system is used. Throughput and delay time are derived through simulation, which is developed using JAVA. We have seen that proposed algorithm improves throughput by 9.6% and delay time by 9.8%.

Real-time Sound Localization Using Generalized Cross Correlation Based on 0.13 ㎛ CMOS Process

  • Jin, Jungdong;Jin, Seunghun;Lee, SangJun;Kim, Hyung Soon;Choi, Jong Suk;Kim, Munsang;Jeon, Jae Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.175-183
    • /
    • 2014
  • In this paper, we present the design and implementation of real-time sound localization based on $0.13{\mu}m$ CMOS process. Time delay of arrival (TDOA) estimation was used to obtain the direction of the sound signal. The sound localization chip consists of four modules: data buffering, short-term energy calculation, cross correlation, and azimuth calculation. Our chip achieved real-time processing speed with full range ($360^{\circ}$) using three microphones. Additionally, we developed a dedicated sound localization circuit (DSLC) system for measuring the accuracy of the sound localization chip. The DSLC system revealed that our chip gave reasonably accurate results in an experiment that was carried out in a noisy and reverberant environment. In addition, the performance of our chip was compared with those of other chip designs.

Modified RTT Estimation Scheme for Improving Throughput of Delay-based TCP in Wireless Networks (무선 환경에서 지연기반 TCP의 성능 향상을 위한 수정된 RTT 측정 기법)

  • Kang, Hyunsoo;Park, Jiwoo;Chung, Kwangsue
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.919-926
    • /
    • 2016
  • In a wireless network, TCP causes the performance degradation because of mistaking packet loss, which is caused by characteristics of wireless link and throughput oscillation due to change of devices connected on a limited bandwidth. Delay based TCP is not affected by packet loss because it controls window size by using the RTT. Therefore, it can solve the problem of unnecessary degradation of the rate caused by misunderstanding reason of packet loss. In this paper, we propose an algorithm for improving the remaining problems by using delay based TCP. The proposed scheme can change throughput adaptively by adding the RTT, which rapidly reflects the network conditions to BaseRTT. It changes the weight of RTT and the increases and decreases window size based on the remaining amount of the buffer. The simulation indicated that proposed scheme can alleviate the throughput oscillation problem, as compared to the legacy TCP Vegas.

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.

Sound Source Localization Method Using Spatially Mapped GCC Functions (공간좌표로 사상된 GCC 함수를 이용한 음원 위치 추정 방법)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.355-362
    • /
    • 2009
  • Sound source localization method based on the time delay of arrival(TDOA) is applied to many research fields such as a robot auditory system, teleconferencing and so on. When multi-microphones are utilized to localize the source in 3 dimensional space, the conventional localization methods based on TDOA decide the actual source position using the TDOAs from all microphone arrays and the detection measure, which represents the errors between the actual source position and the estimated ones. Performance of these methods usually depends on the number of microphones because it determines the resolution of an estimated position. In this paper, we proposed the localization method using spatially mapped GCC functions. The proposed method does not use just TDOA for localization such as previous ones but it uses spatially mapped GCC functions which is the cross correlation function mapped by an appropriate mapping function over the spatial coordinate. A number of the spatially mapped GCC functions are summed to a single function over the global coordinate and then the actual source position is determined based on the summed GCC function. Performance of the proposed method for the noise effect and estimation resolution is verified with the real environmental experiment. The mean value of estimation error of the proposed method is much smaller than the one based on the conventional ones and the percentage of correct estimation is improved by 30% when the error bound is ${\pm}20^{\circ}$.

OFDM/OQAM-IOTA System (OFDM/OQAM-IOTA 시스템)

  • Zhou, Xiao;Heo, Joo;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.120-128
    • /
    • 2004
  • Although conventional OFDM/QAM modulation scheme using guard interval is robust to channel induced ISI (Inter-Symbol Interference) in time-domain, it is very sensitive to ICI (Inter-Carrier Interference) due to doppler effect in frequency domain. OFDM/OQAM-IOTA modulation scheme utilizes IOTA (Isotropic Orthogonal Transform Algorithm) filter that has orthogonality in time and frequency domain so that it is robust to delay spread and doppler effect. OFDM/OQAM-IOTA system can increase bandwidth effeciency since it does not use guard interval. In this paper, we show the structure of OFDM/OQAM-IOTA and perfect channel estimation scheme for OFDM/OQAM-IOTA system. We also compare OFDM/OQAM-IOTA system and OFDM/QAM system in AWGN and 1-path Rayleigh fading channel. Simulation results show that OFDM/OQAM system outperforms OFDM/QAM system.

  • PDF