• Title/Summary/Keyword: Time-based railway crossing control

Search Result 4, Processing Time 0.025 seconds

Development of a Time-Based Railway Crossing Control System and Evaluation (철도건널목 정시간 제어방식 개발 밑 효과분석에 관한 연구)

  • Park Dongjoo;Oh Ju-Taek;Lee Sun-Ha;Jung Chun-Hee;Shin Seong-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.145-154
    • /
    • 2005
  • Traffic accidents at highway-rail crossing result in larger social and economic damages than the accidents at the typical highway intersections. The traditional control and warning systems of the highway-rail crossing have limitations in that 1) they do not recognize the differences of the trains' arrival times because they rely on the distance-based control system, rather than the time-based one, and 2) thereby they usually cause longer delays of vehicles and pedestrians at the highway-rail crossings. The objective of this study is to develop a time-based railroad crossing control system which takes into account the speed and expected arrival time of trains. using the spot speeds and acceleration rates of trains measured at three points, the developed system was found to be able to accurately estimate the arrival time of train. VISSIM simulation package was utilized to compare system effect of the developed time-based railroad crossing control system with that of the conventional distance-based one. It was found that the developed time-based railroad crossing control system reduced the average travel time, maximum delay length, average delay time, and average number of stop-experienced vehicles as much as 7.0$\%$, 75.6$\%$, 12.7$\%$, and 60.0$\%$, respectively, compared with those from the conventional distance-based one.

A Study of Detecting Broken Rail using the Real-time Monitoring System (실시간 모니터링을 통한 레일절손 검지에 관한 연구)

  • Kim, Tae Geon;Eom, Beom Gyu;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • Train accidents can be directly connected to fatal accidents-collision, derailment, Fire, railway crossing accidents-resulting in tremendous human casualties. First of all, the railway derailment is not only related to most of railway accidents but also it can lead to much more catastrophic accompanying train overtured than other factors. Therefore, it is most important factor to ensure railway safety. some foreign countries have applied to the detector machines(e.g., ultrasonic detector car, sleep mode, current detector, optical sensing, optical fiber). Since it was developed in order to prevent train from being derailed. In korea, the existing track method has been used to monitor rail condition using track circuit. However, we found out it impossible for Communication Based Train Control system(CBTC), recent technology to detect rail condition using balise(data transmission devices) without no track circuit. For this reason, it is needed instantly to develop real-time monitoring system used to detect broken rails. Firstly, this paper presents domestic and international statues analysis of rail breaks technology. Secondly, the composition and the characteristics of the real-time monitoring system. Finally, the evidence that this system could assumed the location and type of broken rails was proved by the experiment of prototype and operation line tests. We concluded that this system can detect rail break section in which error span exist within${\pm}1m$.

Fault Tree Analysis based on State-Transition Model (상태 전이 모델 기반 결함 트리 분석)

  • Chung, In-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.49-58
    • /
    • 2011
  • Fault Tree Analysis(FTA) builds fault trees to perform safety analysis of systems. However, building fault trees depends on domain knowledge and expertize on target systems and consumes lots of time and efforts. In this paper, we propose a technique that builds fault trees systematically based on state-transition models which are software design artifacts. For the end, this paper identifies conditions that should be satisfied to guarantee safety of state-transition models and develop templates for fault tree construction. This paper also describes the results of appling the proposed method to railway crossing control system.