도서관 사서의 수많은 업무 중 도서 정리 업무는 사서가 일일이 정리해야 하는 일이기 때문에, 투입되는 인적·시간적 비용이 크다. 이러한 문제를 해결하기 위해 최근 인공지능 기술을 접목한 도서 정리 로봇에 관한 관심이 증가하고 있다. 본 연구에서는 도서 정리 로봇에 적용할 수 있는 다중경유지 최단 경로 알고리즘인 K-ACO 알고리즘을 제안한다. 제안하는 K-ACO 알고리즘은 하나의 로봇이 아니라 여러 대의 로봇을 가정하고 있다. 또한, K-ACO는 개미 알고리즘을 개선하여 K개의 군집을 만들고 각 군집 별 최단 경로를 제공해준다. 본 논문에서는 제안한 알고리즘의 성능 분석을 도서 정리 시간의 관점에서 실시하였다. 제안한 알고리즘인 K-ACO 알고리즘을 한 대학교 도서관에 적용하여 현재 도서 정리 알고리즘과 비교해 보았다. 시뮬레이션을 통해 제안하는 알고리즘은 도서 정리 업무를 치우치지 않고 공평하게 배분하여 궁극적으로 전체 일이 끝나는 시간을 확연히 줄일 수 있음을 알 수 있었다. 본 연구 결과를 통하여 제안한 알고리즘의 적용으로 도서 정리에 필요한 인적·시간적 비용을 절감하여 도서관 내 양질의 서비스 향상을 기대한다.
GPDF(Gaussian Probability Density Function)을 효율적으로 군집화할 수 있는 GBFCM(DM)(Gradient Based Fuzzy c_means with Divergence Measure) 알고리즘이 본 논문에서 제안되었다. 제안된 GBFCM(DM)은 데이터 사이의 거리 척도로 발산거리(Divergence measure)를 적용한 새로운 형태의 FCM으로, 기존의 GBFCM에 기반을 두는 알고리즘이다. 본 논문에서는 MPEG VBR 비디오 데이터를 GPDF형태의 다차원 데이터로 변형시켜 모델링 하고, 모델링 한 MPEG VBR 비디오 데이터를 영화 또는 스포츠 형태로 분류하는데 응용되었다. 본 논문의 실험에서 기존의 FCM, GBFCM과 새롭게 제안된 GBFCM(DM)을 사용하여 모델링 및 분류결과를 상호 비교하였다. 비교결과 GBFCM(DM)이 오분류율의 기준에서 기존의 다른 알고리즘들에 비해 약 5∼l5%의 향상된 성능을 보였다.
This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.
인터넷을 통해 웹이 보편화되면서 폭발적으로 증가하는 사용자의 서비스 요구를 수용하는 것은 점점 더 어려운 문제가 되고 있다. 사용자의 증가를 예측할 수 없는 상황에서 매번 고성능의 시스템을 구입하는 것은 좋은 해결책이 될 수 없다 즉, 필요할 때에 시스템을 적절히, 간단하게 확장할 수 있는 방법이 있어야 한다. 웹 클러스터링 시스템은 이러한 요구를 수용할 수 있는 기술로서 주목받고 있다. 본 논문은 웹 클러스터링 시스템 연구에서 두 가지 점에서 기여를 하고 있다. 우선, FreeBSD상에서 구현되었던 Layer-7 스위치 기법 기반의 웹 클러스터링 시스템을, 많은 사용자에 의해 선호되고 있는 Linux 운영체제에 구현하였다. 이 두 운영체제 사이에는 상당한 차이가 있으며 본 논문에서는 Linux상의 구현에 대해 상세히 언급한다. 두번째는 Zipf-like한 웹 요청의 특성을 반영하여 각 요청에 따라 자원을 클러스터 상에서 효과적으로 할당할 수 있는 DS (Dual Scheduling) 부하 분산 기법을 제안하였다. 실험을 통해 이기법이 시스템 성능을 향상시키는 사실을 보인다.
Castano, Fernando;Haber, Rodolfo E.;Mohammed, Wael M.;Nejman, Miroslaw;Villalonga, Alberto;Lastra, Jose L. Martinez
Smart Structures and Systems
/
제26권4호
/
pp.495-506
/
2020
Monitoring of complex processes faces several challenges mainly due to the lack of relevant sensory information or insufficient elaborated decision-making strategies. These challenges motivate researchers to adopt complex data processing and analysis in order to improve the process representation. This paper presents the development and implementation of quality monitoring framework based on a model-driven approach using embedded artificial intelligence strategies. In this work, the strategies are applied to the supervision of a microfabrication process aiming at showing the great performance of the framework in a very complex system in the manufacturing sector. The procedure involves two methods for modelling a representative quality variable, such as surface roughness. Firstly, the hybrid incremental modelling strategy is applied. Secondly, a generalized fuzzy clustering c-means method is developed. Finally, a comparative study of the behavior of the two models for predicting a quality indicator, represented by surface roughness of manufactured components, is presented for specific manufacturing process. The manufactured part used in this study is a critical structural aerospace component. In addition, the validation and testing are performed at laboratory and industrial levels, demonstrating proper real-time operation for non-linear processes with relatively fast dynamics. The results of this study are very promising in terms of computational efficiency and transfer of knowledge to manufacturing industry.
세계 수산시장은 초과 수요적 현상으로 이러한 경향은 지속적으로 가속화 될 것으로 전망하고 있다. 수산물 수요가 증가되는 양식업은 어업과 비교해 볼 때 비교적 적은 자원의 투입으로도 생산량의 조절 및 표준화 등이 가능하여 높은 성과를 얻을 수 있는 산업이다. 그러나 전통적인 양식은 자연재해, 생태계 오염 등 저생산성의 문제점을 안고 있어 최적의 양식장소로 이동할 수 있는 새로운 양식시스템의 개발이 필요하다. 최적의 장소를 찾기 위해서는 온도, 산소 용존량 등 필요한 데이터를 실시간으로 수집하고 분석해야 한다. 데이터 분석은 머신러닝 기반의 K-means 클러스터링 기법을 적용하여 반복된 자기학습으로 언제, 어디로 양식장을 이동할지 스스로 판단할 수 있도록 하였다. 제시한 연구결과가 어류 양식업 종사자에게 적용된다면 최적의 양식장소를 스스로 찾아감으로써 자연재해, 생태계 오염 등 저생산성의 문제점을 해결 할 수 있을 것이다.
무선 센서 네트워크는 다수의 센서들로 구성되며 일단 배치되면 전원의 교환 충전이 어렵기에 한정된 센서의 배터리를 효율적으로 이용하여 전체 네트워크의 수명을 최대한 길게 하는 것이 중요한 문제이다. 네트워크를 계층적으로 분할하여 관리하는 클러스터링 기법으로 대표적인 LEACH 프로토콜은 전체 네트워크의 수명을 연장시키기 위한 좋은 방법 중 하나이며 셋업과 안정 상태로 분할되는 라운드 단위로 구성된다. 본 논문에서는 셋업 단계 자체를 최소화하여 셋업 단계 시 소비하는 에너지를 절약하며 데이터의 특성을 고려할 수 있는 비교 기법을 적용하여 에너지 효율성을 높이는 방법을 제안한다. 본 논문에서 제안한 방식을 적용하여 시뮬레이션 수행한 결과 기존 LEACH에 비해 시간 흐름에 따른 생존 노드 수가 증가하였으며 노드의 평균 에너지 소비량도 감소함을 확인하였다.
프로그래밍 교육은 학습자 개개인의 특성에 맞는 수준별 단계별 학습이 필요하다. 추천시스템은 개인화서비스를 위해 사용되는 방법의 하나로, 본 연구에서는 추천시스템을 사용하여 웹기반 프로그래밍 교육 환경에서 학습자 개개인에 적합한 학습을 추천할 수 있는 방법을 제공한다. 제안하는 수준별 프로그래밍 학습을 위한 추천시스템은 학습주제별 학습수준 기반 학습자 프로파일과 학습주제사이의 연관성 프로파일을 이용한 협업 필터링을 사용하여 특정 학습자의 학습수준과 학습범위에 적절한 프로그래밍 문제를 제공하도록 한다. 그 결과 프로그래밍 언어 교육과정에서 발생하는 수준별 단계별 학습에 맞는 프로그래밍 문제 제공의 어려움을 해결하여, 학습자의 프로그래밍 능력 향상의 결과를 얻을 수 있었다. 더 나아가 기존 협업필터링 방법을 사용하는 경우와 비교해 볼 때 추천 성능향상 및 분석 시간 감소를 통해 추천시스템의 한계점 중의 하나인 확장성을 해결할 수 있는 방법을 제시한다.
The tactical computer is currently being developed and installed in armored vehicles and tanks for reinforcement. With the tactical computer, Korea Army will be able to grasp the deployment status of our forces, enemy, and obstacles under varying situations. Furthermore, it makes the exchange of command and tactical intelligence possible. Recent studies showed that the task performance is greatly affected by the user interface. The U.S. Army is now conducting user-centered evaluation tests based on C2 (Command & Control) to develop tactical intelligence machinery and tools. This study aims to classify and regroup subordinate menu functions according to the user-centered task performance for the Korea Army's tactical computer. Also, the research suggests an ergonomically sound layout and size of main touch buttons by considering human factors guidelines for button design. To achieve this goal, eight hierarchical subordinate menu functions are initially drawn through clustering analysis and then each group of menu functions was renamed. Based on the suggested menu structure, new location and size of the buttons were tested in terms of response time, number of error, and subjective preference by comparing them to existing ones. The result showed that the best performance was obtained when the number of buttons or functions was eight to conduct tactical missions. Also, the improved button size and location were suggested through the experiment. It was found in addition that the location and size of the buttons had interactions regarding the user's preference.
In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.