• Title/Summary/Keyword: Time-based Clustering

Search Result 728, Processing Time 0.038 seconds

Chaotic Time Series Prediction using Parallel-Structure Fuzzy Systems (병렬구조 퍼지스스템을 이용한 카오스 시계열 데이터 예측)

  • 공성곤
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.113-121
    • /
    • 2000
  • This paper presents a parallel-structure fuzzy system(PSFS) for prediction of time series data. The PSFS consists of a multiple number of fuzzy systems connected in parallel. Each component fuzzy system in the PSFS predicts the same future data independently based on its past time series data with different embedding dimension and time delay. The component fuzzy systems are characterized by multiple-input singleoutput( MIS0) Sugeno-type fuzzy rules modeled by clustering input-output product space data. The optimal embedding dimension for each component fuzzy system is chosen to have superior prediction performance for a given value of time delay. The PSFS determines the final prediction result by averaging the outputs of all the component fuzzy systems excluding the predicted data with the minimum and the maximum values in order to reduce error accumulation effect.

  • PDF

A recent overview on financial and special time series models (금융 및 특수시계열 모형의 조망)

  • Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • Contrasted with the standard linear ARMA models, financial time series exhibits non-standard features such as fat-tails, non-normality, volatility clustering and asymmetries which are usually referred to as "stylized facts" in financial time series context (Terasvirta, 2009). We are accordingly led to ad hoc models (apart from ARMA) to accommodate stylized facts (Andersen et al., 2009). The paper aims to give a contemporary overview on financial and special time series models based on the recent literature and on the author's publications. Various models are illustrated including asymmetric models, integer valued models, multivariate models and high frequency models. Selected statistical issues on the models are discussed, bringing some perspectives to the future works in this area.

Chaotic Features for Traffic Video Classification

  • Wang, Yong;Hu, Shiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2833-2850
    • /
    • 2014
  • This paper proposes a novel framework for traffic video classification based on chaotic features. First, each pixel intensity series in the video is modeled as a time series. Second, the chaos theory is employed to generate chaotic features. Each video is then represented by a feature vector matrix. Third, the mean shift clustering algorithm is used to cluster the feature vectors. Finally, the earth mover's distance (EMD) is employed to obtain a distance matrix by comparing the similarity based on the segmentation results. The distance matrix is transformed into a matching matrix, which is evaluated in the classification task. Experimental results show good traffic video classification performance, with robustness to environmental conditions, such as occlusions and variable lighting.

Code Combining Cooperative Diversity in Long-haul Transmission of Cluster based Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1293-1310
    • /
    • 2011
  • A simple modification of well known Low Energy Adaptive Clustering Hierarchy (LEACH) protocol is proposed to exploit cooperative diversity. Instead of selecting a single cluster-head, we propose M cluster-heads in each cluster to obtain a diversity of order M. The cluster-heads gather data from all the sensor nodes within the cluster using same technique as LEACH. Cluster-heads transmit gathered data cooperatively towards the destination or higher order cluster-head. We propose a code combining based cooperative diversity protocol which is similar to coded cooperation that maximizes the performance of the proposed cooperative LEACH protocol. The implementation of the proposed cooperative strategy is analyzed. We develop the upper bounds on bit error rate (BER) and frame error rate (FER) for our proposal. Space time block codes (STBC) are also a suitable candidate for our proposal. In this paper, we argue that the STBC performs worse than the code combining cooperation.

Parallel Implementation Strategy for Content Based Video Copy Detection Using a Multi-core Processor

  • Liao, Kaiyang;Zhao, Fan;Zhang, Mingzhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3520-3537
    • /
    • 2014
  • Video copy detection methods have emerged in recent years for a variety of applications. However, the lack of efficiency in the usual retrieval systems restricts their use. In this paper, we propose a parallel implementation strategy for content based video copy detection (CBCD) by using a multi-core processor. This strategy can support video copy detection effectively, and the processing time tends to decrease linearly as the number of processors increases. Experiments have shown that our approach is successful in speeding up computation and as well as in keeping the performance.

Fuzzy identification by means of fuzzy inference method (퍼지추론 방법에 의한 퍼지동정)

  • 안태천;황형수;오성권;김현기;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.200-205
    • /
    • 1993
  • A design method of rule-based fuzzy modeling is presented for the model identification of complex and nonlinear systems. Three kinds of method for fuzzy modeling presented in this paper include simplified inference (type 1), linear inference (type 2), and modified linear inference (type 3). The fuzzy c-means clustering and modified complex methods are used in order to identify the preise structure and parameter of fuzzy implication rules, respectively and the least square method is utilized for the identification of optimal consequence parameters. Time series data for gas funace and sewage treatment processes are used to evaluate the performances of the proposed rule-based fuzzy modeling.

  • PDF

Generating Activity-based Diary from PC Usage Logs

  • Sadita, Lia;Kim, Hyoung-Nyoun;Park, Ji-Hyung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.339-341
    • /
    • 2012
  • This paper presents a method for generating an autonomous activity-based diary in the environment including a personal computer (PC). In order to record a user's various tasks in front of a PC, we consider the contextual information such as current time, opened programs, and user interactions. As one modality for the user interaction, a motion sensor was applied to recognize a user's hand gestures in case that the activity is conducted without interaction between the user and the PC. Moreover, we propose a temporal clustering method to recapitulate the sequential and meaningful activity in the stream of extracted PC usage logs. By combining those two processes, we summarize the user activities in the PC environment.

SSR-Primer Generator: A Tool for Finding Simple Sequence Repeats and Designing SSR-Primers

  • Hong, Chang-Pyo;Choi, Su-Ryun;Lim, Yong-Pyo
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.189-193
    • /
    • 2011
  • Simple sequence repeats (SSRs) are ubiquitous short tandem duplications found within eukaryotic genomes. Their length variability and abundance throughout the genome has led them to be widely used as molecular markers for crop-breeding programs, facilitating the use of marker-assisted selection as well as estimation of genetic population structure. Here, we report a software application, "SSR-Primer Generator " for SSR discovery, SSR-primer design, and homology-based search of in silico amplicons from a DNA sequence dataset. On submission of multiple FASTA-format DNA sequences, those analyses are batch processed in a Java runtime environment (JRE) platform, in a pipeline, and the resulting data are visualized in HTML tabular format. This application will be a useful tool for reducing the time and costs associated with the development and application of SSR markers.

ANN-based Evaluation Model of Combat Situation to predict the Progress of Simulated Combat Training

  • Yoon, Soungwoong;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.31-37
    • /
    • 2017
  • There are lots of combined battlefield elements which complete the war. It looks problematic when collecting and analyzing these elements and then predicting the situation of war. Commander's experience and military power assessment have widely been used to come up with these problems, then simulated combat training program recently supplements the war-game models through recording real-time simulated combat data. Nevertheless, there are challenges to assess winning factors of combat. In this paper, we characterize the combat element (ce) by clustering simulated combat data, and then suggest multi-layered artificial neural network (ANN) model, which can comprehend non-linear, cross-connected effects among ces to assess mission completion degree (MCD). Through our ANN model, we have the chance of analyzing and predicting winning factors. Experimental results show that our ANN model can explain MCDs through networking ces which overperform multiple linear regression model. Moreover, sensitivity analysis of ces will be the basis of predicting combat situation.

Integrated Vehicle Routing Model for Multi-Supply Centers Based on Genetic Algorithm (유전자알고리즘 및 발견적 방법을 이용한 차량운송경로계획 모델)

  • 황흥석
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.3
    • /
    • pp.91-102
    • /
    • 2000
  • The distribution routing problem is one of the important problems in distribution and supply center management. This research is concerned with an integrated distribution routing problem for multi-supply centers based on improved genetic algorithm and GUI-type programming. In this research, we used a three-step approach; in step 1 a sector clustering model is developed to transfer the multi-supply center problem to single supply center problems which are more easy to be solved, in step 2 we developed a vehicle routing model with time and vehicle capacity constraints and in step 3, we developed a GA-TSP model which can improve the vehicle routing schedules by simulation. For the computational purpose, we developed a GUI-type computer program according to the proposed methods and the sample outputs show that the proposed method is very effective on a set of standard test problems, and it could be potentially useful in solving the distribution routing problems in multi-supply center problem.

  • PDF