최근 콘텐츠의 소비 방식 변화는 비디오 클립이라는 형식과 소셜 비디오 공유 플랫폼의 활성화를 야기했다. 이러한 비디오 클립 공급의 자동화를 위하여 여러 가지 방법이 시도되고 있다. 본 논문에서는 콘텐츠 자체의 특성에 기인한 방법이 아닌 집단 지성에 의한 북마크 데이터의 클러스터링을 통하여 효과적인 클립을 획득하는 방법을 제안한다. 사용자에 의한 북마크 데이터를 2차원 평면의 점으로 표현한 뒤, 1차원의 북마크 누적 횟수 그래프를 이용하여 분할 클러스터링을 하는 방법은 콘텐츠 특성에 대한 이해 없이도 효과적인 하이라이트 추출을 가능하게 한다. 제시하는 실험 결과는 이 방법의 유용함을 보여준다.
Most pressurized water reactors use Venturi flow meters to measure the feedwater flow rate. However, fouling phenomena, which allow corrosion products to accumulate and increase the differential pressure across the Venturi flow meter, can result in an overestimation of the flow rate. In this study, a soft-sensing model based on fuzzy support vector regression was developed to enable accurate on-line prediction of the feedwater flow rate. The available data was divided into two groups by fuzzy c means clustering in order to reduce the training time. The data for training the soft-sensing model was selected from each data group with the aid of a subtractive clustering scheme because informative data increases the learning effect. The proposed soft-sensing model was confirmed with the real plant data of Yonggwang Nuclear Power Plant Unit 3. The root mean square error and relative maximum error of the model were quite small. Hence, this model can be used to validate and monitor existing hardware feedwater flow meters.
There are some modified methods such as K-means Clustering Particle Swarm Optimization and Niching Particle Swarm Optimization based on PSO which aim to locate all optima in multimodal functions. K-means Clustering Particle Optimization could locate all optima of functions with finite number of optima. Niching Particle Swarm Optimization is able to locate all of optima but high computing time. Because of those disadvantages, we proposed a new method that could locate all of optima with reasonal time. We applied our method and others as well to analytic functions. By comparing the outcomes, it is shown that our method is significantly more effective than the two others.
A robot needs a human detection algorithm for interaction with a human. This paper proposes a method that finds people using a SVM (support vector machine) classifier and a stereo camera. Feature vectors of SVM are extracted by HoG (histogram of gradient) within images. After training extracted vectors from the clustered images, the SVM algorithm creates a classifier for human detection. Each candidate for a human in the image is generated by clustering of depth information from a stereo camera and the candidate is evaluated by the classifier. When compared with the existing method of creating candidates for a human, clustering reduces computational time. The experimental results demonstrate that the proposed approach can be executed in real time.
3D reconstruction of urban architecture, land, and roads is an important part of building a "digital city." Unmanned aerial vehicles (UAVs) are gradually replacing other platforms, such as satellites and aircraft, in geographical image collection; the reason for this is not only lower cost and higher efficiency, but also higher data accuracy and a larger amount of obtained information. Recent 3D reconstruction algorithms have a high degree of automation, but their computation time is long and the reconstruction models may have many voids. This paper decomposes the object into multiple regional parallel reconstructions using the clustering principle, to reduce the computation time and improve the model quality. It is proposed to detect the planar area under low resolution, and then reduce the number of point clouds in the complex area.
Communications for Statistical Applications and Methods
/
제29권1호
/
pp.103-125
/
2022
In this paper, we analyze the time series data of the case and death counts of COVID-19 that broke out in China in December, 2019. The study period is during the lockdown of Wuhan. We exploit functional data analysis methods to analyze the collected time series data. The analysis is divided into three parts. First, the functional principal component analysis is conducted to investigate the modes of variation. Second, we carry out the functional canonical correlation analysis to explore the relationship between confirmed and death cases. Finally, we utilize a clustering method based on the Expectation-Maximization (EM) algorithm to run the cluster analysis on the counts of confirmed cases, where the number of clusters is determined via a cross-validation approach. Besides, we compare the clustering results with some migration data available to the public.
인터넷기반의 클러스터 시스템 환경에서 부하공유 알고리즘은 네트워크의 특성 및 노드의 이질성에 따른 부하 불균형에 효과적으로 대처 할 수 있어야 한다. 본 논문에서 제안하는 효율적인 부하공유기법은 Weighted Factoring 알고리즘을 기반으로 스케줄러를 생성하고 여기에 적응할당정책과 개선된 고정 분할 단위 알고리즘을 적용하여 작업을 분배하는 것이다. 본 논문에서 적용한 적응할당정책은 상대적으로 작업속도가 느린 종노드의 작업을 빠른 종노드가 대신 수행하도록 하는 기법이며, 개선된 고정 분할 단위 알고리즘은 종노드의 계산시간과 데이터전송에 필요한 네트워크 통신시간을 겹치도록 하는 것이다. 제안된 알고리즘의 성능 평가를 위한 시스템 환경에서 멀티미디어 응용에 많이 사용되는 행렬의 곱셈 프로그램을 PVM을 통하여 실험한 결과, 본 논문에서 제안한 알고리즘이 NOW 환경에서 우수한 Send, GSS, Weighted Factoring 알고리즘보다 각각 75%, 79%, 그리고 17% 효율적임을 보였다.
본 논문에서는 2019년 국내 공항을 기준으로 측정된 시계열 항공기 위치 데이터를 활용하여 국내 공항에 이착륙 시 접근 단계에서의 항공 위험상황 중 Go-Around 및 UOC_D 를 분석하고, 다양한 클러스터링 기반 머신 러닝 기법을 적용하여 국내 항공 데이터에서 가장 알맞은 분석 기법이 무엇인지를 실험을 통해 제시한다. 항공기 위치를 측정하기 위한 센서는 ADS-B를 단일로 사용하였으며, 클러스터링 기법들 중 K-Means, GMM, DBSCAN 등의 알고리즘을 사용하여 이상상황을 분류하기 위한 모델을 설계하였다. 그 중 해외에서는 RF 모델이 가장 나은 성능을 보였으나, 국내 항공 데이터에 대해서는 국내 지형에 특화된 부분을 반영한 GMM이 가장 높은 분류 성능을 보이는 것으로 실험을 통해 확인하였다.
개인 통신 방법의 수단으로 전자 메일이 널리 사용되고 있으나, 업무에 직접 관련이 없는 쓸모없는 상업용 메일도 대량으로 유포되고 있다. 본 연구에서는 사용자가 작성한 프로파일을 이용하여 메일을 자동으로 그룹핑(grouping) 하는 방법을 제안하고자 한다. 기존의 연구 방법은 단어의 빈도수만을 이용하는 단일 속성을 이용하므로 높은 정확률을 얻을 수 없었다. 그러나 본 논문에서 제안하는 방법은 기존 사용자의 폴더에 수신된 메일의 분류 체계에서 추출된 사용자 프로파일을 이용하여 그룹핑 되는 메일의 정확률을 높이고자 한다. 본 논문에서 적극적으로 이용하는 정보는 다중 속성(송신처, 문서의 주제, 문서의 유형 정보, 시간제한 표현의 어구 등) 값이다. 사용자의 프로파일을 이용함으로써 새로 도착한 메일이 사용자에게 중요한가 혹은 중요하지 않은가의 자동 판단이 가능하도록 시스템을 설계하였다. 학습 데이터를 네 가지 형태로 나누어 실험한 결과 Rocchio와 Widrow-Hoff의 상관계수가 각각 0.40과 0.43인 것 보다 본 논문의 방법이 0.52로 보다 높은 상관계수를 나타내 빈도수만을 이용하는 기존의 연구보다 정확한 방법임을 알 수 있었다.
본 논문에서는 사물인터넷(IoT, Internet of Things) 사용자가 안드로이드 플랫폼 기반의 홈 허브가 유니티 3D 모델링으로 사물인터넷 센서의 3D 위치표출 방안이 제안되었다. 특별히, 3차원 공간에서 IoT 센서는 설치 공간별로 클러스링을 통해 IoT센서 속성과 배터리 상태를 모니터링 방식을 설계한다. 또한, 3차원 공간상에서 신규 설치한 IoT 센서가 인접 센서들의 무선신호의 비콘신호 및 도착시간 분석에 따른 센서의 위치를 추적하는 방식은 센서의 무선신호세기(RSSI, received signal strength indicator)와 방위각을 기반으로 3차원 공간상에서 수신 각도에 따른 센서의 3D 위치를 표출할 수 있다. 이때 유니티 런쳐가 탑재된 스마트 허브 플랫폼은 사물인터넷 센서의 동작상태 모니터링이 가능하며, 다양한 센서의 생애주기를 관리할 수 있도록 동영상이 3차원 텍스쳐가 동시에 연동하도록 활용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.