The spectrum sensing is important for decision of using frequency band. It checks the frequency band for cognitive radio system. In this paper, we apply autocorrelation function to the energy detection method. We use the autocorrelation function to improve the performance of spectrum sensing method based on the energy detection method. This method is different from cyclostationary process method where parameters such as the mean or the autocorrelation function are time-varying periodically. And we propose improved method that is robust in poor radio environment. If the proposed method applies for sensing in the cognitive radio system, it will have the structural simplicity and the fast computation of spectrum sensing.
Lee Hae Woo;Lee Min Woo;Joung Jea Youl;Park Jong Moon
한국생물공학회:학술대회논문집
/
2004.07a
/
pp.47-84
/
2004
Principal Component Analysis나 Partial Least Squares와 같은 다변량 통계 기법은 변수간의 correlation structure로부터 공정의 variance를 설명할 수 있는 latent variable를 얻고 이를 이용하여 공정을 효과적으로 modeling할 수 있는 방법으로 최근 들어 많은 관심을 얻고 있다. 하지만 PLS는 공정이 stationary state에 있다고 가정하기 때문에, 생물학적 공정의 non-stationary and time-varying behavior를 설명하기에 부적절하다. 본 논문에서는 PLS 알고리즘의 혐기성 폐수처리 공정에의 적용에 있어, 이와 같은 문제를 해결하기 위해서 adaptive PLS 알고리즘을 사용함으로써 변화하는 공정의 특성에 대응하여 모델을 update하는 방법을 이용하였다. 하지만 실시간 데이터로부터 adaptive PLS 방법을 적용하는 데에는 많은 어려움이 존재하며, 특히 outlier나 abnormal disturbance에 모델이 부적절하게 adaptation하는 문제가 발생할 수 있다. 따라서 이의 해결을 위해 adaptive PLS를 적용하는데 있어 robustness를 향상시키기 위해 monitoring index를 이용하여 abnormal data에 weight를 주고 안정적인 모델의 update가 가능하게 하는 방법을 제안하였으며, 이를 적용하여 성공적으로 혐기성 폐수처리 공정의 Output을 예측하고 효과적으로 공정을 모니터링할 수 있었다. 만들어진 PLS 모델은 산업폐수를 처리하기 위한 industrial plan에서 측정된 실제 데이터에 적용하여 그 효용성을 입증하였으며, 그 결과는 mechanistic model을 적용하기 힘든 실공정에 비교적 쉽게 implementation할 수 있는 장점이 있다.
The Transactions of The Korean Institute of Electrical Engineers
/
v.65
no.1
/
pp.16-22
/
2016
This paper addresses the load usage scheduling in the HEMS for residential power consumers. The HEMS would lead the residential users to change their power usage, so as to minimize the cost in response to external information such as a time-varying electricity price, the outside temperature. However, there may be a consumer's inconvenience in the change of the power usage. In order to improve this, it is required to understand the pattern of load usage according to the external information. Therefore, this paper suggests a methodology to model the load usage pattern, which classifies home appliances according to external information affecting the load usage and models the usage pattern for each appliance based on a copula function representing the correlation between variables. The modeled pattern would be reflected as a constraint condition for an optimal load usage scheduling problem in HEMS. To explain an application of the methodology, a case study is performed on an electrical water heater (EWH) and an optimal load usage scheduling for EHW is performed based on the branch-and-bound method. From the case study, it is shown that the load usage pattern can contribute to an efficient power consumption.
In the present study an Artificial Neural Network (ANN) was used to predict the compressive strength of self-compacting concrete. The data developed experimentally for self-compacting concrete and the data sets of a total of 99 concrete samples were used in this work. ANN's are considered as nonlinear statistical data modeling tools where complex relationships between inputs and outputs are modeled or patterns are found. In the present ANN model, eight input parameters are used to predict the compressive strength of self-compacting of concrete. These include varying amounts of cement, coarse aggregate, fine aggregate, fly ash, fiber, water, super plasticizer (SP), viscosity modifying admixture (VMA) while the single output parameter is the compressive strength of concrete. The importance of different input parameters for predicting the strengths at various ages using neural network was discussed in the study. There is a perfect correlation between the experimental and prediction of the compressive strength of SCC based on ANN with very low root mean square errors. Also, the efficiency of ANN model is better compared to the multivariable regression analysis (MRA). Hence it can be concluded that the ANN model has more potential compared to MRA model in developing an optimum mix proportion for predicting the compressive strength of concrete without much loss of material and time.
The global performance of the 5 MW OC4 semisubmersible floating wind turbine in random waves with or without steady/dynamic winds is numerically simulated by using the turbine-floater-mooring fully coupled dynamic analysis program FAST-CHARM3D in time domain. The numerical simulations are based on the complete second-order diffraction/radiation potential formulations along with nonlinear viscous-drag force estimations at the body's instantaneous position. The sensitivity of hull motions and mooring dynamics with varying wave-kinematics extrapolation methods above MWL(mean-water level) and column drag coefficients is investigated. The effects of steady and dynamic winds are also illustrated. When dynamic wind is added to the irregular waves, it additionally introduces low-frequency wind loading and aerodynamic damping. The numerically simulated results for the 5 MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model-test results by Technip/NREL/UMaine. Those numerical-simulation results have good correlation with experimental results for all the cases considered.
In order to solve the problem of low tracking accuracy caused by complex noise in the fault diagnosis of complex nonlinear system, a fault diagnosis method of high precision cost reference particle filter (CRPF) is proposed. By optimizing the low confidence particles to replace the resampling process, this paper improved the problem of sample impoverishment caused by the sample updating based on risk and cost of CRPF algorithm. This paper attempts to improve the accuracy of state estimation from the essential level of obtaining samples. Then, we study the correlation between the current observation value and the prior state. By adjusting the density variance of state transitions adaptively, the adaptive ability of the algorithm to the complex noises can be enhanced, which is expected to improve the accuracy of fault state tracking. Through the simulation analysis of a fuel unit fault diagnosis, the results show that the accuracy of the algorithm has been improved obviously under the background of complex noise.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.28
no.8
/
pp.331-336
/
2016
This study presents a coolant density calculation device and its corresponding method by using a mass flowmeter and the LabVIEW program. The method can be easily measured with a mixture of coolant and by calculating the percentage of ethylene-glycol without additional investment. The cooling water is very important in a vehicle to protect the engine, and the cooling performance is affected by the mixture concentration and coolant density. The coolant density calculation device measures the mixed concentration in the anti-freeze cooling mixture made from distilled water and ethylene-glycol in real time with the mass flowmeter that is commonly attached to the radiator or heater core. The calculation program for the mixture concentration percentage was developed using the LabVIEW software. The correlation between experimental results and the calculation was conducted for a range of temperature from 40 to $90^{\circ}C$ and by varying the mixture ratio of distilled water and ethylene-glycol. As a result, the anti-freeze coolant concentration in the volume percentage is able to monitor the coolant density in a timely basis by implementing a mixture concentration calculation program without the need for additional equipment investment. The results of the calculation for the mixture concentration level show a maximum 2.7% deviation compared to the experimental results.
This study analyzes how capital market comovement can affect investors' decision making. We first analyze time-varying correlation coefficient between stock indices of U.S.A. and Korea. and then, using our empirical results, attempt to draw implications on investors' behavior. We find that the tendency of comovement between Korea and U.S.A. equity returns has considerably increased after the financial crisis of late 1997. Through the analysis of investors' behavior, we find that foreign investors, contrary to ITC's (Investment Trust Company) and individual investors, buy more shares in Korean markets as American stock prices go up. Foreign investors employ dynamic hedging strategy and give more weight on global economic factors than domestic ones. Our empirical results as a whole imply that investment behavior of foreign investors is most closely related to comovement of U.S.A. and Korea capital markets.
Lee, Jin-Yong;Lim, Hyoun Soo;Yoon, Ho Il;Kim, Poongsung
Journal of Soil and Groundwater Environment
/
v.20
no.5
/
pp.16-25
/
2015
The City of Boulder is located at an average elevation of 1,655 m (5,430 feet), the foothills of the Rocky Mountains in Colorado. Its daily air temperature is much varying and snow is very frequent and heavy even in spring. This paper examines characteristics of shallow (surface and depth = 10 cm) soil temperatures measured from January to May 2015 in the high elevation city Boulder, Colorado. The surface soil temperature quickly responded to the air temperature with the strongest periodicity of 1 day while the subsurface soil temperatures showed a less correlation and delayed response with that. The short-time Fourier of the soil temperatures uncovered their very low frequencies characteristics in heavy snow days while it revealed high frequencies of their variations in warm spring season. The daily minimum air temperature exhibited high cross-correlations with the soil temperatures without lags unlike the maximum air temperature, which is derived from its higher and longer auto-correlation and stronger spectrums of low frequencies than the maximum air temperature. The snow depth showed an inverse relationship with the soil temperature variations due to snow's low thermal conductivity and high albedo. Multiple regression for the soil temperatures using the air temperature and snow depth presented its predicting possibility of them even though the multiple r2 of the regression is not that much satisfactory (r2 = 0.35-0.64).
The Journal of Korean Institute of Communications and Information Sciences
/
v.30
no.9A
/
pp.788-794
/
2005
In this paper, we focus on the potential of dual polarized antennas in mobile system. thus, this paper designs exact dual polarized channel with Spatial Channel Model (SCM) and investigates the performance for certain environment. Using proposed the channel model; we know estimates of the channel capacity as a function of cross polarization discrimination (XPD) and spatial fading correlation. It is important that the MIMO channel matrix consists of Kronecker product dividable spatial and polarized channel. Through the channel characteristics, we propose an algorithm for the adaptation of transmit antenna configuration to time varying propagation environments. The optimal active transmit antenna subset is determined with equal power allocated to the active transmit antennas, assuming no feedback information on types of the selected antennas. We first consider a heuristic decision strategy in which the optimal active transmit antenna subset and its system capacity are determined such that the transmission data rate is maximized among all possible types. This paper then proposes singular values decision procedure consisting of Kronecker product with spatial and polarize channel. This method of singular value decision, which the first channel environments is determined using singular values of spatial channel part which is made of environment parameters and distance between antennas. level of correlation. Then we will select antenna which have various polarization type. After spatial channel structure is decided, we contact polarization types which have considerable cases It is note that the proposed algorithms and analysis of dual polarized channel using SCM (Spatial Channel Model) optimize channel capacity and reduce the number of transmit antenna selection compare to heuristic method which has considerable 100 cases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.