• 제목/요약/키워드: Time-Temperature Parameter

검색결과 575건 처리시간 0.027초

풍속에 따른 포설 아스팔트 혼합물의 온도변화에 대한 열전달 해석 (Heat Transfer Analysis for Asphalt Mixture Temperature Variation due to Wind Speed)

  • 윤태영;유평준
    • 한국도로학회논문집
    • /
    • 제17권4호
    • /
    • pp.33-40
    • /
    • 2015
  • PURPOSES: Evaluation of the wind speed effect on the temperature drop of an asphalt mixture during construction, by using the transient heat transfer theory and dominant convective heat transfer coefficient model. METHODS: Finite difference method (FDM) is used to solve the transient heat transfer difference equation numerically for various wind speeds and initial temperature conditions. The Blasius convective heat transfer coefficient model is adapted to account for the effect of wind speed in the temperature predictions of the asphalt mixture, and the Beaufort number is used to select a reasonable wind speed for the analysis. As a function of time and depth, the temperature of the pavement structure is predicted and analyzed for the given initial conditions. RESULTS : The effect of wind speed on the temperature drop of asphalt mixture is found to be significant. It seems that wind speed is another parameter to be accounted for in the construction specifications for obtaining a better quality of the asphalt mixture. CONCLUSIONS: It is concluded that wind speed has a significant effect on the temperature drop of the asphalt layer. Although additional field observations have to be made to reflect the effect of wind speed on the construction specifications, it appears that wind speed is a dominant variable to be considered, in addition to the atmospheric temperature.

가스터빈 연소기의 성능평가 (The Performance Evaluation of a Gas Turbine Combustor)

  • 안국영;김한석;안진혁;배형수
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1294-1299
    • /
    • 2000
  • The combustion characteristics have been investigated to develop the 50 kW-class gas turbine combustor. The combustor design program was developed and applied to design this combustor. The combustion air which has the temperature of 45, 200, $300^{\circ}C$ were supplied to combustor for elucidating the effect of inlet air temperature on CO, NOx emissions and flame temperature. The exit temperature and NO were increased and CO was decreased with increasing inlet air temperature. Also, the effect of equivalence ratio was considered to verify the combustor performance. The emissions of CO and NO with inlet air temperature can be analyzed qualitatively by measuring the temperature inside the combustor. The combustion performance with fuel schedule was evaluated to get the informations of the starting and part loading process of gas turbine. The combustion was stable above the equivalence ratio of 0.18. The pattern factor which is the important parameter of combustor performance was satisfied with the design criterion. Consequently the combustor was proved to meet the performance goal required for the target gas turbine system.

Investigation of Likelihood of Cracking in Reinforced Concrete Bridge Decks

  • ElSafty, Adel;Abdel-Mohti, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권1호
    • /
    • pp.79-93
    • /
    • 2013
  • One of the biggest problems affecting bridges is the transverse cracking and deterioration of concrete bridge decks. The causes of early age cracking are primarily attributed to plastic shrinkage, temperature effects, autogenous shrinkage, and drying shrinkage. The cracks can be influenced by material characteristics, casting sequence, formwork, climate conditions, geometry, and time dependent factors. The cracking of bridge decks not only creates unsightly aesthetic condition but also greatly reduces durability. It leads to a loss of functionality, loss of stiffness, and ultimately loss of structural safety. This investigation consists of field, laboratory, and analytical phases. The experimental and field testing investigate the early age transverse cracking of bridge decks and evaluate the use of sealant materials. The research identifies suitable materials, for crack sealing, with an ability to span cracks of various widths and to achieve performance criteria such as penetration depth, bond strength, and elongation. This paper also analytically examines the effect of a wide range of parameters on the development of cracking such as the number of spans, the span length, girder spacing, deck thickness, concrete compressive strength, dead load, hydration, temperature, shrinkage, and creep. The importance of each parameter is identified and then evaluated. Also, the AASHTO Standard Specification limits liveload deflections to L/800 for ordinary bridges and L/1000 for bridges in urban areas that are subject to pedestrian use. The deflection is found to be an important parameter to affect cracking. A set of recommendations to limit the transverse deck cracks in bridge decks is also presented.

벡터제어 유도전동기 구동의 파라메터 보상에 대한 연구 (A Study On Parameter Compensation Scheme in Vector Controlled Induction Motor Drive)

  • 박민호;김영렬;원충연;김태훈;김연준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.20-24
    • /
    • 1989
  • The time optimal position control scheme can be repeatedly taken from the initial state of a dynamic system to a desired one as fast as possible at the industrial drives. In this case, the machine parameters will vary due to temperature, frequency, and saturation effects. In particular, the rotor resistance value changes dramatically with temperature and frequency. These changes affect the command values of the stator current components and slip speed. There is a mismatch between the commanded variables and actual variables of the induction motor drive, and this situation leads to decoupling of the vector controller from the plant, i.e the induction motor. Consequences of such decoupling include the initiation of oscillations of the rotor flux and unsuitable switching of electromagnetic torque of the induction motor servo drive. Therefore, a rotor resistance parameter compensating method for the induction motor is described.

  • PDF

압연해석을 위한 슬래브-유한요소법에 대한 연구 (An Investigation of Slab-FEM for Rolling Analysis)

  • 송정훈;박종진
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3454-3462
    • /
    • 1996
  • Compared to a full three dimensional FEM, the Slab-FEM hybrid method reduces the required computation time distinctly and it can be applied to the analysis of a shape rolling process. However, the method is somewhat approximate and predictions by the method contain certain inaccuracies. In the present investigation a parameter called T-factor was introduced to compensate the inaccuracies of the method and proper values of the parameter were estimated for different widths of bars and reduction ratios. Then, the method was applied to analyze cold and hot rollings of rectangular bars and predicted results were compared to those of experiments. Nonuniform distributions of temperature in the bars were predicted by utilizing the temperature equation obtained for a semi-infinite solid under radiation and convection boundary conditions. It was found out that accuracies of spread and roll separating force predictions could be enhanced by using proper values of the T-factor.

Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

  • Fynan, Douglas A.;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.684-701
    • /
    • 2016
  • The Gaussian process model (GPM) is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU) and Level 1 probabilistic safety assessment (PSA) success criteria definitions while dealing with a large number of uncertainties.

드레스룸 표면 결로 발생 예측 모델 개발 - 노달 모델과 데이터 기반 모델 - (Development of Prediction Models of Dressroom Surface Condensation - A nodal network model and a data-driven model -)

  • 주은지;이준혜;박철수;여명석
    • 대한건축학회논문집:구조계
    • /
    • 제36권3호
    • /
    • pp.169-176
    • /
    • 2020
  • The authors developed a nodal network model that simulates the flow of moist air and the thermal behavior of a target area. The nodal network model was enhanced using a parameter estimation technique based on the measured temperature, humidity, and schedule data. However, the nodal model is not good enough for predicting humidity of the target space, having 55.6% of CVRMSE. It is because re-evaporation effect could not be modeled due to uncertain factors in the field measurement. Hence, a data-driven model was introduced using an artificial neural network (ANN). It was found that the data-driven model is suitable for predicting the condensation compared to the nodal model satisfying ASHRAE Guideline with 3.36% of CVRMSE for temprature, relative humidity, and surface temperature on average. The model will be embedded in automated devices for real-time predictive control, to minimize the risk of surface condensation at dressroom in an apartment housing.

A Permeability Measurement of Small Unilamellar Vesicles by 6-Carboxyfluorescein$^*$

  • Lee, Choong-Hee;Choi, Myung-Un
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권4호
    • /
    • pp.154-158
    • /
    • 1984
  • In order to characterize the permeability of small unilamellar vesicles (SUV), efflux of 6-carboxyfluorescein (6-CF) from the vesicles was monitored spectrophotofluorometrically. Since the entrapped highly quenched 6-CF (200 mM) became fluorescent upon release from the vesicles, the 6-CF could be used as an efflux probe. SUV containing entrapped 6-CF was prepared from egg phosphatidylcholine and separated by gel filtration on Sepharose 4B. Observed change of relative fluorescent intensity with time was sigmoidal. From this curve, the parameter of permeability was determined either by half-time or a released amount per unit time from the initial slope. Half-time of efflux of prepared SUV having 302 ng phospholipid/ml in 10 mM Tris-HCl buffer pH 7.4 was 21.0 min at $37{\circ}C$. Various factors which could affect the half-time were examined including temperature, pH, salt, and vesicle concentration. In particular the effect of vesicle concentration on the efflux revealed that the permeability can be a function of the concentration.

대면적 미세패턴 사출성형에서의 전사 특성 실험 (A study on the micro pattern replication properties of large area in injection molding)

  • 김태훈;유영은;제태진;김창완;박영우;최두선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.205-208
    • /
    • 2007
  • We injection molded a thin plate with micro prism patterns on its surface and investigated the fidelity of replication of the micro pattern depending on the process parameter such as mold temperature, injection rate or packing pressure. The size of the $90^{\circ}$ prism pattern is $50{\mu}m$ and the size of the plate is $400mm{\times}400mm$. The thickness is 1mm. The fidelity of the replication turned out quite different according to the process parameters and location of the patterns of the plate. We measured the cavity pressure and temperature in real-time during the molding to analyze the effect of the local melt pressure and temperature on the micro pattern replication.

  • PDF

Impact of Water Quality Parameters on the Disinfection of Total Coliform with Chlorine Dioxide

  • Lee Yoon-Jin
    • 한국환경보건학회지
    • /
    • 제32권3호
    • /
    • pp.215-221
    • /
    • 2006
  • This study investigated the inactivation of the total coliform, an indicator organism in chlorine dioxide, in order to assess the optimal disinfection procedure for drinking water treatment and distribution systems. This research focus on a number of factors, including the dosage of disinfectant, contact time, pH, temperature and DOC. Water samples were taken from the outlet of a settling basin at a conventional surface water treatment system. As the pH increased in the range of pH 6-9, the bactericidal effects of disinfectants decreased. Changes in levels of pH did not significantly after the disinfection effect of chlorine dioxide for total coliform. With an increase in temperature, there was a subsequent increase in the bactericidal effects of disinfectants. Thus, it is evident that a decrease in temperature will higher the CT values required to inactivate coliform for during the winter. DOC addition can also reduce total coliform inactivation. DOC is the most significant variable in total coliform inactivation with chlorine dioxide.