• 제목/요약/키워드: Time-Temperature Parameter

검색결과 570건 처리시간 0.026초

Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.909-924
    • /
    • 2015
  • This paper investigates the vibration phenomenon of a nanobeam subjected to a time-dependent heat flux. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the functionally graded (FG) nanobeam is pure ceramic whereas the lower surface is pure metal. A nonlocal generalized thermoelasticity theory with dual-phase-lag (DPL) model is used to solve this problem. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and without energy dissipation can extracted as limited and special cases of the present model. An analytical technique based on Laplace transform is used to calculate the variation of deflection and temperature. The inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of the phase-lags (PLs), nonlocal parameter and the angular frequency of oscillation of the heat flux on the lateral vibration, the temperature, and the axial displacement of the nanobeam are studied.

중수로 압력관의 수화물이 LBB평가에 미치는 영향 (Effect of Hydride of the PHWR Pressure Tube on the LBB Evaluation)

  • 오동준;김영석
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.610-616
    • /
    • 2004
  • The aim of this study was to investigate the hydride embrittlement when the LBB evaluation was carried out for the integrity of PHWR Pressure Tubes. The transverse tensile and CCT toughness tests were performed at three hydrogen concentrations while the test temperatures were changed (RT to 30$0^{\circ}C$). Both the transverse tensile and the fracture toughness tests showed the hydrogen embitterment clearly at RT but this phenomenon was disappeared while the test temperature arrived at 25$0^{\circ}C$. Using the DHC test results, the CCL and LBB time were calculated and compared. The hydride embrittlement at the LBB evaluation made the LBB time short definedly. If the operating temperature, DHCV and LBB deterministic parameters such as A and m were known, LBB time could be estimated without the calculation of CCL.

핵융합로용 저방사화 철강재료(RAFs)의 크리프 특성평가 (Evaluation on Creep properties of Reduced Activation Ferritic Steel(RAFs) for Nuclear Fusion Reactor)

  • 공유식;윤한기;김동현;박이현;남승훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.146-151
    • /
    • 2003
  • Reduced Activation Ferritic/Martenstic (RAFs) are leading candidates for structural materials of D-T fusion reactor. One of The RAFs, JLF-1 (9Cr-2W-V, Ta) has been developed and proved to have good resistance against high-fluency neutrino irradiation and good phase stability. Recently, in order to clarify the strengthening mechanical at high temperature, a new scheme to improve high temperature mechanical properties is desired. Therefore, the creep properties and creep life prediction by Larson-Miller Parameter method for JLF-1 to be used for fusion reactor materials or other high temperature components were presented at the elevated temperatures of $500^{\circ}C$, $550^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and $704^{\circ}C$. It was confirmed experimentally and quantitatively that a creep life predictive e벼ation at such various high temperatures was well derived by LMP.

  • PDF

급속가열환경에서 A12024-T3의 인장특성 (Tensile Characteristics of A12024-T3 under Rapid Heating)

  • 김종환;김제훈
    • 한국항공우주학회지
    • /
    • 제32권8호
    • /
    • pp.101-108
    • /
    • 2004
  • 본 연구에서는 비행체 구조재료인 A12024-T3에 대하여 공력가열환경을 모사할 수 있는 복사가열기를 제작하였으며 $1^{\circ}C/sec{\sim}30^{\circ}C/sec$ 가열률 범위에서 열기계적 인장특성을 평가하였다. 가열환경에 따른 재료강도 평가를 위하여 급속가열 인장시험 결과와 일정 온도로 30분 노출후의 인장시험결과를 항복응력 측면에서 비교 고찰하였다. 급속가열 인장시험 결과로부터 시간-온도계수를 응용한 가열률-항복온도 계수를 도출하였으며, 항복응력을 가열률과 항복온도로 표현되는 실험적 master 수식을 제안하였다. 본 연구 결과를 통하여 획득 된 급속가열 안장시험결과들은 초음속 비행체 설계시 선정재료의 안전여유를 판단하는 기초자료로 활용될 수 있다.

Dehydration Kinetics of Rehmannia (Rehmannia glutinosa Liboschitz)

  • Rhim, Jong-Whan;Kim, Ji-Hye;Jeong, Won-Chul
    • Food Science and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.771-777
    • /
    • 2007
  • Sliced and whole root of rehmannia were dehydrated in a laboratory dryer at 40, 60, 80, and $100^{\circ}C$ to evaluate the kinetic parameters for dehydration of rehmannia. The drying curves of both samples were characterized by a falling-rate drying period only. Sliced rehmannia dried 1.1 to 3.1 times faster than whole root of rehmannia depending on drying temperature. Equilibrium moisture content (EMC) of rehmannia samples at the drying temperature tested were 0.069-0.078 g water/g dry solid, which was coincided with the monolayer moisture content (0.06 and 0.07 g water/g dry solid) evaluated from desorption isotherms using GAB (Guggenheim-Anderson-de Boer) model. A logarithmic model for thin layer drying was applied to evaluate the drying time to reach EMC ($t_{EMC}$) and drying constant (k). The effect of temperature on $1/t_{EMC}$ and k was described by the Arrhenius model with activation energy values of 32.56 and 47.14 kJ/mol determined using the former parameter, and 34.27 and 38.26 kJ/mol determined using the latter parameter for sliced and whole root of rehmannia, respectively.

연속 레이저 흡수에 의한 증발제거 과정의 관련 인자 영향 고찰 (Effect of Parameters in Evaporative Removal Process by Absorption of a CW Laser)

  • 김진윤;송태호
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권1호
    • /
    • pp.67-76
    • /
    • 1995
  • Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd: YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as BrJ, and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased. To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained.

  • PDF

핵융합로용 저방사화 철강재료(RAFs)의 크리프 특성평가 (Evaluation on Creep Properties of Reduced Activation Ferritic Steel(RAFs) for Nuclear Fusion Reactor)

  • 공유식;윤한기;남승훈
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.58-63
    • /
    • 2004
  • Reduced Activation Ferritic/Martensitic Steels (RAFs) are leading candidntes for structural materials of a D-T fusion reactor. One of the RAFs, JLF-l (9Cr-2W-V, Ta) has been developed and has shown to have good resistance against high-fluency neutrino irradiation and good phase stability. Recently, in order to clarify the strengthening mechanisms at high temperatures, a new scheme to improve high temperature mechanical properties is desired. Therefore, the test technique development of high temperature creep behaviors for this material is very important. In this paper, the creep properties and creep life prediction, using the Larson-Miler parameter method for JLF-l to be used for fusion reactor materials or other high temperature components, are presented at the elevated temperatures of 50$0^{\circ}C$, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and 704$^{\circ}C$. It was confirmed, experimentally and quantitatively, that a creep life predictive equation, at such various high temperatures, is well derived mr the LMP method.

Non-linear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.105-120
    • /
    • 2018
  • In this paper, the nonlinear free and forced vibration responses of sandwich nano-beams with three various functionally graded (FG) patterns of reinforced carbon nanotubes (CNTs) face-sheets are investigated. The sandwich nano-beam is resting on nonlinear Visco-elastic foundation and is subjected to thermal and electrical loads. The nonlinear governing equations of motion are derived for an Euler-Bernoulli beam based on Hamilton principle and von Karman nonlinear relation. To analyze nonlinear vibration, Galerkin's decomposition technique is employed to convert the governing partial differential equation (PDE) to a nonlinear ordinary differential equation (ODE). Furthermore, the Multiple Times Scale (MTS) method is employed to find approximate solution for the nonlinear time, frequency and forced responses of the sandwich nano-beam. Comparison between results of this paper and previous published paper shows that our numerical results are in good agreement with literature. In addition, the nonlinear frequency, force response and nonlinear damping time response is carefully studied. The influences of important parameters such as nonlocal parameter, volume fraction of the CNTs, different patterns of CNTs, length scale parameter, Visco-Pasternak foundation parameter, applied voltage, longitudinal magnetic field and temperature change are investigated on the various responses. One can conclude that frequency of FG-AV pattern is greater than other used patterns.

Experimental research on the creep buckling of fire-resistant steel columns at elevated temperature

  • Yang, Kuo-Chen;Yu, Zong-Han
    • Steel and Composite Structures
    • /
    • 제15권2호
    • /
    • pp.163-173
    • /
    • 2013
  • The thermal creep is one of the major factors causing the buckle of steel columns in the fire events. But, few related studies have been reported to evaluate the factors affecting the thermal creep of steel column experimentally or numerically. In this study a series of Fire-resistant steel columns with three different slenderness ratios under a sustained load are tested under a uniform temperature up to six hours in order to evaluate the creep upon three selected factors, temperature, applied load, and column slenderness. Based on experimental results, a proposed creep strain rate model is established as the function of a single parameter of the load ratio of temperature LR(T) to determine the buckling time of steel column due to creep. Furthermore it is found that the creep can be neglected when LR(T) is smaller than 0.77.

STS 430 고온변형 특성에 관한 연구 (High Temperature Deformation Characteristics)

  • 조범호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.179-182
    • /
    • 2000
  • The dynamic softening behavior of type 430 ferritic stainless steel could be characterized by the hot torsion test in the temperature range of 900-110$0^{\circ}C$ and the strain rate range of 0.05-5/sec. It is found that the continuous dynamic recrystallization (CDRX) was a major dynamic softening mechanism. The effects of process variables strain ($\varepsilon$) stain rate($\varepsilon$)and temperature (T) on CDRX could be individually established from the analysis of flow stress curves and microstructure. The effect of CDRX individually established from the analysis of flow stress curves and microstructure. The effect of CDRX increased with increasing strain rate and decreasing temperature in continuous deformation. The multipass deformation processes were performed with 10 pass deformations. The CDRX effect occurred in multipass deformatioon. The grain refinement could be achieved from multipass deformation The grain refinement increased with increasing strain rate and decreasing temperature. Also the CDRX in multipass deformation was affected by interpass time and pass strain. The total strain was to be found key parameter to occur CDRX.

  • PDF