• 제목/요약/키워드: Time-Reversal

검색결과 259건 처리시간 0.021초

Design of Multichannel Spherical Loudspeaker Array for the Spatial Sound Manipulation (소리의 공간 제어를 위한 구형 다채널 스피커 어레이 설계)

  • Kang, Dong-Soo;Choi, Jung-Woo;Lee, Jung-Min;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • 제31권4호
    • /
    • pp.214-224
    • /
    • 2012
  • The objective of this paper is to design multichannel spherical loudspeaker array by considering various positioning methods such as Gaussian grid, Lebedev grid and packing method. For the spatial sound manipulation, which is to make desired sound field by controling multiple sound sources, the Kirchhoff- Helmholtz integral states that sound fields can be reproduced in terms of infinite control sources on the integral surface. But since we cannot control infinite number of sources for the implementation, we have to allocate finite number of sound sources which can approximately act as infinite number of sources. To manipulate sound field inside of a sphere (which is typical example of three dimensional array) by controlling sound sources on the surface, three methods of allocating sound sources, which are Gaussian grid, Lebedev grid and packing method, are reviewed. For each geometry, the performances of manipulation rendered by time-reversal operator and higher-order ambisonics are compared.

Communication Performance Analysis according to Seasons in West Sea (서해상에서의 계절에 따른 통신 성능 분석)

  • Kim, Ju-Ho;Bok, Tae-Hoon;Bae, Jin-Ho;Paeng, Dong-Guk;Lee, Chong-Hyun;Kim, Seong-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제48권1호
    • /
    • pp.9-15
    • /
    • 2011
  • Communication environments in the context of underwater channel are characterized to be bad by the characteristics of multipath. Multipaths are affected by various factors e.g. the temperature and the salinity of the ocean. In this paper, the representative sound speed profiles were calculated in the southern part of Baengnyeoung island so that the eigen-ray paths with the channel impulse responses were determined using the average sound speed profile of last decade. The performance of underwater communication was analyzed using the BPSK modulation and time reversal method. The significant differences of results were shown according to the change of season and carrier frequency by using computer simulation. In addition, improved performance is obtained using preprocess channel impulse response for the better comparison of two cases of summer and autumn.

Determination of Impact Source Location Using a Single Transducer and Time Reversal Technique (단일센서와 시간역전법을 이용한 판에서의 충격위치 결정에 관한 연구)

  • Jeong, Hyun-Jo;Cho, Sung-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제32권1호
    • /
    • pp.47-55
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a plate structure is presented in this paper. The method employs a single sensor and spatial focusing of time reversal (TR) acoustics. We first examine the TR focusing effect at the impact position and its surroundings through simulation and experiment. The imaging results of impact points show that the impact source location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testings of plate-like structures.

A Bi-directional Coding using Time Reversal Mirror in Relay Systems (중계기 기반 시스템에서의 시역전 방법을 적용한 양방향 부호화)

  • Kwon, Yang-Soo;Yoo, Jae-Ho;Kim, Hyeon-Su;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제33권12A호
    • /
    • pp.1156-1164
    • /
    • 2008
  • In this paper, we propose a bi-directional coding method (BTC) using time reversal mirror for effective data exchange between mobile stations and basestations. In conventional relay systems, while one node transmits data, other nodes should keep silent to avoid interference. Thus, to interchange data between basestations and mobile stations, it needs four stages. However, using the proposed BTC method, a relay station transmits a probe source before data transmission, and using this information, mobile stations and basestations transmit data to the relay station simultaneously. Therefore, since it exchanges data in only two steps, the system achieves improved system capacity. In addition, owing to no need for complex calculation, the relay system can be implemented with low complexity. The simulation results demonstrate that the proposed method achieves enhanced system capacity.

Optimization of Array Configuration in Time Reversal Processing (시역전 처리에서 센서 배열 최적화에 관한 연구)

  • Joo, Jae-Hoon;Kim, Jea-Soo;Ji, Yoon-Hee;Chung, Jae-Hak;Kim, Duk-Yung
    • The Journal of the Acoustical Society of Korea
    • /
    • 제29권7호
    • /
    • pp.411-421
    • /
    • 2010
  • A time-reversal mirror (TRM) is useful in diverse areas, such as reverberation ing, target echo enhancement and underwater communication. In underwater communication, the bit error rate has been improved significantly due to the increased signal-to-noise ratio by spatio-temporal focusing. This paper deals with two issues. First, the optimal number of array elements for a given environment was investigated based on the exploitation of spatial diversity. Second, an algorithm was developed to determine the optimal location of the given number of array elements. The formulation is based on a genetic algorithm maximizing the contrast between the foci and area of interest as an objective function. In addition, the developed algorithm was applied to the matched field processing with ocean experimental data for verification. The sea-going data and simulation showed almost 3 dB improvement in the output power at the foci when the array elements were optimally distributed.

Debonding monitoring of CFRP strengthened RC beams using active sensing and infrared imaging

  • Sohn, Hoon;Kim, Seung Dae;In, Chi Won;Cronin, Kelly E.;Harries, Kent
    • Smart Structures and Systems
    • /
    • 제4권4호
    • /
    • pp.391-406
    • /
    • 2008
  • This study attempts to develop a real-time debonding monitoring system for carbon fiber-reinforced polymer (CFRP) strengthened structures by continuously inspecting the bonding condition between the CFRP layer and the host structure. The uniqueness of this study is in developing a new concept and theoretical framework of nondestructive testing (NDT), in which debonding is detected without relying on previously-obtained baseline data. The proposed reference-free damage diagnosis is achieved based on the concept of time reversal acoustics (TRA). In TRA, an input signal at an excitation point can be reconstructed if the response signal measured at another point is reemitted to the original excitation point after being reversed in the time domain. Examining the deviation of the reconstructed signal from the known initial input signal allows instantaneous identification of damage without requiring a baseline signal representing the undamaged state for comparison. The concept of TRA has been extended to guided wave propagations within the CFRP-strengthened reinforced concrete (RC) beams to improve the detectibility of local debonding. Monotonic and fatigue load tests of large-scale CFRP-strengthened RC beams are conducted to demonstrate the potential of the proposed reference-free debonding monitoring system. Comparisons with an electro-mechanical impedance method and an inferred imaging technique are provided as well.

Variation of Asymmetric Hysteresis Loops with Annealing Temperature and Time (열처리 온도와 시간에 따른 비대칭 자기 이력 곡선의 변화)

  • 신경호;민성혜;이장로
    • Journal of the Korean Magnetics Society
    • /
    • 제5권4호
    • /
    • pp.251-260
    • /
    • 1995
  • It has been reported that Co-based amorphous ferromagnetic alloys annealed in a small magnetic field develop a reproducible, asymmetric hysteresis loop. If the direction of the field during annealing is regarded as +, the magnetization reversal from - to + is smooth and reversible, with its slope determined by the demagnetizing field of the sample. This phenomenon is called the asymmetric magnetization reversal (AMR). The shape of the hyster-esis loop depends sensitively on the condition during the anneal and the alloy composition. Here, we report on the effect of the annealing temperature and time on AMR in a zero magnetostrictive ferromagnetic amorphous alloy. The AMR effect develops in a very short time at a reasonably high temperature, but is stabilized by annealing for a prolonged time.

  • PDF

Analysis of Flow Reversal by Tidal Elevation and Discharge Conditions in a Tidal River (감조하천에서 조위 및 유량조건에 따른 역류 분석)

  • Song, Chang Geun;Kim, Hyung-Jun;Rhee, Dong Sop
    • Journal of the Korean Society of Safety
    • /
    • 제29권6호
    • /
    • pp.104-110
    • /
    • 2014
  • The Han River is the only waterway in Korea where estuary is not blocked by dykes so that tidal water is flowing in and out through the tidal reach. The extreme tidal range in the Yellow Sea causes an intense flood current, stretching over horizontal extents of tens of kilometers into the rivers. To elucidate the flow reversal by discharge conditions and transient tidal level in the Han river, numerical simulations were conducted under 7 boundary conditions for two days with 10 minute time step. As the flow conditions changed from low discharge and high tidal difference to high discharge and low tidal difference, the flow reversals became weaker and the velocity of forward flow direction became higher due to the increased flow momentums and decreased tidal differences. In the case of normal flow, the maximum reverse velocity was 0.4 m/s, which was equivalent to the maximum forward velocity. In addition, the pattern of the development and decay of forward and reverse flow was presented.

On the Beam Focusing Behavior of Time Reversed Ultrasonic Arrays Using a Multi-Gaussian Beam Model

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Jeong, Yon-Ho;Bae, Sung-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제28권6호
    • /
    • pp.531-537
    • /
    • 2008
  • One of the fundamental features of time reversal acoustic (TRA) techniques is the ability to focus the propagating ultrasonic beam to a specific point within the test material. Therefore, it is important to understand the focusing properties of a TR device in many applications including nondestructive testing. In this paper, we employ an analytical scheme for the analysis of TR beam focusing in a homogeneous medium. More specifically, a nonparaxial multi-Gaussian beam (NMGB) model is used to simulate the focusing behavior of array transducers composed of multiple rectangular elements. The NMGB model is found to generate accurate beam fields beyond the nonparaxial region. Two different simulation cases are considered here for the focal points specified on and off from the central axis of the array transducer. The simulation results show that the focal spot size increases with increasing focal length and focal angle. Furthermore, the maximum velocity amplitude does not always coincide with the specified focal point. Simulation results for the off-axis focusing cases do demonstrate the accurate steering capability of the TR focusing.

Stratigraphy of a Sediment Core Collected from the NE Equatorial Pacific Using Reversal Patterns of Geomagnetic Field and Be Isotope Ratio (지자기 방향변화 및 베릴륨 동위원소비를 이용한 북동 적도 태평양 주상시료의 층서확립)

  • Kim, Wonnyon;Hyeong, Kiseong;Kong, Gee Soo
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.395-405
    • /
    • 2014
  • A 570 cm-long sediment core was retrieved at $9^{\circ}57^{\prime}N$ and $131^{\circ}42^{\prime}W$ in 5,080 m water depth from the northeast equatorial Pacific and its stratigraphy was established with $^{10}Be/^9Be$ and paleomagnetic measurements. Successive AF demagnetization reveals eight geomagnetic field reversals. In the reference geologic time scale, the eight reversal events correspond to an age of about 4.5 Ma. However, $^{10}Be/^9Be$-based age yields 9.5 Ma at a depth of 372 cm. Such a large discrepancy in determined ages is attributed to an extremely low sedimentation rate, 0.4 mm/kyr on average, of the study core and resultant loss or smoothing of geomagnetic fields. The composite age model reveals a wide range in the sedimentation rate - varying from 0.1 to 2.4 mm/kyr. However, the sedimentation rate shows systematic variation depending on sedimentary facies (Unit II and III), which suggests that each lithologic unit has a unique provenance and transport mechanism. At depths of 110-80 cm with a sedimentation rate of about 0.1 mm/kyr, ancient geomagnetic field reversal events of at least a 1.8 Myr time span have not been recorded, which indicates the probable existence of a hiatus in the interval. Such a sedimentary hiatus is observed widely in the deep-sea sediments of the NE equatorial Pacific.