• Title/Summary/Keyword: Time-History analysis

Search Result 1,915, Processing Time 0.029 seconds

Overstrength factors for SDOF and MDOF systems with soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1273-1289
    • /
    • 2016
  • This paper addresses the concept of lateral overstrength; the ratio of actual lateral strength to design base shear force, for both SDOF and MDOF systems considering soil structure interaction. Overstrength factors are obtained with inelastic time history analysis for SDOF systems for period range of 0.1-3.0 s, five different aspect ratios (h/r=1, 2, 3, 4, 5) and five levels of ductility (${\mu}$=2, 3, 4, 5, 6) considering soil structure interaction. Structural overstrength for MDOF systems are obtained with inelastic time history collapse analysis for sample 1, 3, 6, 9, 12 and 15 storey RC frame systems. In analyses, 64 ground motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used. Also lateral overstrength ratios considering soil structure interaction are compared with those calculated for fixed-base cases.

Earthquake response of a core shroud for APR1400

  • Jhung, Myung Jo;Choi, Youngin;Oh, Chang-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2716-2727
    • /
    • 2021
  • The core shroud is one of the most important internal components of the reactor vessel internals because it meets the neutron fluence directly emitted by the nuclear fuel. In particular, dynamic effects for an earthquake should be evaluated with respect to the neutron irradiation flux. As a prerequisite to this study, simplified and detailed finite element models are developed for the core shroud using the ANSYS Design Parametric Language. Using the El Centro earthquake, seismic analyses are performed for the simplified and detailed core shroud models. Modal characteristics are obtained and their results are used for a time history analysis. Response spectrum analyses are also performed to access the degree of seismic excitation. The results of these analyses are compared to investigate the response characteristics between the simplified and detailed core shroud models from the time history and response spectrum analyses.

Preliminary Design Procedure for Practical Application of Dampers Using Earthquake Response Spectrum (응답스펙트럼을 활용한 감쇠장치 예비 설계절차 제시)

  • Roh, Ji Eun;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2019
  • In this study, a design procedure for the practical application of the dampers to building structures under earthquake loads was presented by using earthquake response spectrum. Nonlinear time history results using a 10 story building structure installed with damper verified the effectiveness of the proposed procedure by showing that the structural response could be reduced to the target performance level for seismic loads. Since the proposed design procedures are based on response spectrum seismic analysis result of the original structure, the capacity, location and the number of damper and the consequent response reduction effects can be preliminarily determined without performing the nonlinear time history analysis.

A rapid screening method for selection and modification of ground motions for time history analysis

  • Behnamfar, Farhad;Velni, Mehdi Talebi
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.29-39
    • /
    • 2019
  • A three-step screening process is presented in this article for selection of consistent earthquake records in which number of suitable ground motions is quickly screened and reduced to a handful number. Records that remain at the end of this screening process considerably reduce the dispersion of structural responses. Then, an effective method is presented for spectral matching and modification of the selected records. Dispersion of structural responses is explored using different statistical measures for each scaling procedure. It is shown that the Uniform Design Method, presented in this study for scaling of earthquake records, results in most cases in the least dispersion measure.

Dynamic Experiment to Evaluate Response Characteristics of High-Rise Buildings on Period Characteristics of Seismic Waves (지진파 주기특성에 따른 고층건축물의 응답특성 평가를 위한 동적실험)

  • Oh, Sang-Hoon;Kim, Ju-Chan
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.127-133
    • /
    • 2019
  • Damage to high-rise buildings caused by earthquakes is less frequency due to small distribution of high-rise buildings and low transmissibility of seismic motion to high-rise buildings. However, demand for high-rise buildings is increasing for development of construction technology and efficient land use. In addition, if high-rise buildings are constructed on soft ground such as landfill, transmissibility of seismic motion due to long-periodization of seismic waves is likely to increase. Thus, with development of technology, buildings are required to expand range of seismic design such as safety for long-period seismic waves. Therefore, in this study, dynamic experiments were performed to evaluate response characteristics of high-rise buildings according to period characteristics of seismicwaves and time history analysis was performed to verify them.

Probabilistic analysis of structural pounding considering soil-structure interaction

  • Naeej, Mojtaba;Amiri, Javad Vaseghi
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.289-304
    • /
    • 2022
  • During strong ground motions, adjacent structures with insufficient separation distances collide with each other causing considerable architectural and structural damage or collapse of the whole structure. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. This paper attempts to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. Actually, the aim of this study is to evaluate the influence of foundation flexibility on probabilistic evaluation of structural pounding. A Hertz-damp pounding force model has been considered in order to effectively capture impact forces during collisions. In total, 5.25 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results of the study indicate that the soil-structure interaction significantly influences the pounding-involved responses of adjacent structures during earthquakes and generally increases the pounding probability.

Seismic retrofitting of steel moment-resisting frames (SMRFs) using steel pipe dampers

  • Ali Mohammad Rousta
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • The use of steel pipe dampers (SPD) as fuses or interchangeable elements in the steel moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of steel pipe dampers in MRF has been investigated. Evaluation of MRF with and without SPD models were performed using the finite element method by ABAQUS. For validation, an MRF and MRF with steel pipe dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3, 6, and 9 stories was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, steel pipe dampers should be used to perform properly against earthquakes. The installation of steel pipe dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

Improved seismic performance of steel moment frames using rotational friction dampers

  • Ali Banazadeh;Ahmad Maleki;Mohammad Ali Lotfollahi Yaghin
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.223-234
    • /
    • 2023
  • The use of displacement-dependent rotational friction dampers (RFD) as fuses or interchangeable elements in the moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of rotational friction dampers in MRF has been investigated. Evaluation of MRF with and without RFD models was performed using the finite element method by ABAQUS. For validation, an MRF and MRF with rotational friction dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3-, 6-, and 9-story was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, rotational friction dampers should be used to perform properly against earthquakes. The installation of rotational friction dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

Comparison of the Functional Ambulation Performance Scores of Senior Adults With or Without a History of Falls (낙상 경험 유무에 따른 노인의 기능적 보행성취도 점수(FAP score) 비교)

  • Kwon, Hyuk-Cheol;Kong, Jin-Yong
    • Physical Therapy Korea
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2003
  • The purpose of the study was to determine if there was a difference in the Functional Ambulation Performance score of senior adults with or without a history of falls during walking at a preferred velocity. Twelve subjects with a history of falling (mean age=73.8) and eight subjects with no history of falling (mean age=70.4) participated in the study. Temporal and spatial parameters of gait were analyzed using the computerized GAITRite system. The GAITRite system integrates specific components of locomotion to provide a single, numerical representation of gait, the Functional Ambulation Performance score. The Functional Ambulation Performance score is a Quantitative means of assessing gait based on specific temporal and spatial parameters. Statistical analysis of the two groups demonstrated a significant decrease in Functional Ambulation Performance score for those with a history of falls. They had lower values for step/extremity ratios, mean normalized velocity, and greater values for step times, percent in double support. These results indicate that the GAITRite system can be useful in detecting footfall patterns and selected time and distance measurements of persons with a history of falls and the Functional Ambulation Performance score can be used as indicators of gait performance for senior adults with a history of falls.

  • PDF

Vibration Analyses of the STSAT-3 Satellite (과학기술위성 3 호 진동해석)

  • Cho, Hee-Keun;Suh, Jung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.502-507
    • /
    • 2008
  • An entire composite structure satellite is developing for the first time in Korea. All of the structure is made of CFRP-composite faced aluminum honeycomb sandwich structure. Here the random and sinusoidal spectrum analysis of the satellite was carried out by using the finite element method. The general spectrum analysis was herein performed but also the PSD (power spectrum density) function for random vibration analysis had been transformed into equivalent time domain function and then transient analysis is conducted. The time history of displacement, acceleration, stress and velocity responses with respect to the PSD input has been achieved by the time dependent transient function transformed from frequency PDS function. It enables one to perform dynamic durability analysis and then expect the life time of the composite structure. The composite faced sandwich structure's spectrum analysis of a domestically-developed satellite, STSAT-3, has been discussed in the present study.

  • PDF