• Title/Summary/Keyword: Time-Efficiency of Algorithm

Search Result 1,626, Processing Time 0.029 seconds

Optimization of photovoltaic thermal (PV/T) hybrid collectors by genetic algorithm in Iran's residential areas

  • Ehyaei, M.A.;Farshin, Behzad
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.31-55
    • /
    • 2017
  • In the present study, PV/T collector was modeled via analysis of governing equations and physics of the problem. Specifications of solar radiation were computed based on geographical characteristics of the location and the corresponding time. Temperature of the collector plate was calculated as a function of time using the energy equations and temperature behavior of the photovoltaic cell was incorporated in the model with the aid of curve fitting. Subsequently, operational range for reaching to maximal efficiency was studied using Genetic Algorithm (GA) technique. Optimization was performed by defining an objective function based on equivalent value of electrical and thermal energies. Optimal values for equipment components were determined. The optimal value of water flow rate was approximately 1 gallon per minute (gpm). The collector angle was around 50 degrees, respectively. By selecting the optimal values of parameters, efficiency of photovoltaic collector was improved about 17% at initial moments of collector operation. Efficiency increase was around 5% at steady condition. It was demonstrated that utilization of photovoltaic collector can improve efficiency of solar energy-based systems.

Algorithm of Holding Time Control Using Delay-Tolerant Packet for Energy-Efficient Transmission (에너지 효율적인 전송을 위한 지연 허용 패킷의 유지시간 제어 알고리즘)

  • Ryu, Seung Min;Choi, Won Seok;Choi, Seong Gon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.4
    • /
    • pp.87-94
    • /
    • 2016
  • This paper proposes an energy transmission method to maximize energy efficiency of a based station. This method makes use of classification of service type to solve an inefficient use of transmission power, which is from exponential relationship between the legacy data throughput and transmission power. The proposed one is a way to find the most energy-efficiency points with the transmitted optimal amount of data on users in a base station of wireless network environment. For this, we propose EETA (Energy-Efficient Transmission Algorithm) which can control the amount of data and the holding time at the base station. As a result, the proposed method can improve the energy efficiency of about 10% compared to the legacy base station.

An Automatic Time Stepping Algorithm Using a Prior Error Estimator in Structural Dynamics (구조동역학 문제에서 전단계 오차추정치를 이용한 자동시간간격 조정 알고리듬)

  • 조은형;정진태
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1240-1246
    • /
    • 1999
  • A prior error estimator which is solving structural dynamic problems and which is based on the generalized-method, is developed. Since the proposed error estimator is computed with only previous information, the time step size can be adaptively selected without the feedback mechanism. This paper shows that the automatic time stepping algorithm using the error estimator performs an efficient time integration. To verify its efficiency, several examples are numerically investigated.

  • PDF

Energy Efficiency Maximization for Energy Harvesting Bidirectional Cooperative Sensor Networks with AF Mode

  • Xu, Siyang;Song, Xin;Xia, Lin;Xie, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2686-2708
    • /
    • 2020
  • This paper investigates the energy efficiency of energy harvesting (EH) bidirectional cooperative sensor networks, in which the considered system model enables the uplink information transmission from the sensor (SN) to access point (AP) and the energy supply for the amplify-and-forward (AF) relay and SN using power-splitting (PS) or time-switching (TS) protocol. Considering the minimum EH activation constraint and quality of service (QoS) requirement, energy efficiency is maximized by jointly optimizing the resource division ratio and transmission power. To cope with the non-convexity of the optimizations, we propose the low complexity iterative algorithm based on fractional programming and alternative search method (FAS). The key idea of the proposed algorithm first transforms the objective function into the parameterized polynomial subtractive form. Then we decompose the optimization into two convex sub-problems, which can be solved by conventional convex programming. Simulation results validate that the proposed schemes have better output performance and the iterative algorithm has a fast convergence rate.

Implementation and Performance Evaluation of Vector based Rasterization Algorithm using a Many-Core Processor (매니코어 프로세서를 이용한 벡터 기반 래스터화 알고리즘 구현 및 성능평가)

  • Shon, Dong-Koo;Kim, Jong-Myon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In this paper, we implemented and evaluated the performance of a vector-based rasterization algorithm of 3D graphics using a SIMD-based many-core processor that consists of 4,096 processing elements. In addition, we compared the performance and efficiency of the rasterization algorithm using the many-core processor and commercial GPU (Graphics Processing Unit) system which consists of 7 GPUs and each of which have 512 cores. Experimental results showed that the SIMD-based many-core processor outperforms the commercial GPU system in terms of execution time (3.13x speedup), energy efficiency (17.5x better), and area efficiency (13.3x better). These results demonstrate that the SIMD-based many-core processor has potential as an embedded mobile processor.

Development of a Practical Algorithm for Airport Ground Movement Routing (공항 지상이동 경로 탐색을 위한 실용 알고리즘 개발)

  • Yun, Seokjae;Ku, SungKwan;Baik, Hojong
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.116-122
    • /
    • 2015
  • Motivated by continuous increase in flight demand, awareness of the importance in developing ways to increase aircraft operational efficiency on the airport movement area has been raised. This paper proposes a new routing algorithm for providing the shortest path in a right time, enhancing the aircraft movement efficiency. Many researches on developing algorithms have been performed, for example, Dijkstra algorithm and $A^*$ algorithm. The Dijkstra algorithm provide optimal solution but could possibly provide it with a cost of relatively longer computation time. On the other hand, $A^*$ algorithm does not guarantee the optimality of a solution. In this paper, we suggest a Hybrid $A^*$ algorithm, incorporating both algorithms to eliminate the weaknesses. Rigorous test shows the proposed Hybrid $A^*$ algorithm may achieve shorter computing time and optimality in searching the shortest path.

Improvement of Energy Efficiency for an Omnidirectional Mobile Robot with Steerable Omnidirectional Wheels (조향 가능한 전방향 바퀴를 갖는 전방향 이동로봇의 에너지 효율 개선)

  • Song Jae-Bok;Kim Jeong-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.696-703
    • /
    • 2005
  • Since most autonomous mobile robots are powered by a battery, it is important to increase the continuous operating time without recharging. This can be achieved by improving the energy efficiency of a mobile robot, but little research on energy efficiency has been performed. This paper proposes two methods for improving the energy efficiency of an omnidirectional mobile robot.. One method is to realize a continuously variable transmission (CVT) by adopting the mechanism of steerable omnidirectional wheels. The other is the proposed steering algorithm in which wheel arrangement of the mobile robot is continuously adjusted so as to obtain the maximum energy efficiency of the motors during navigation. In addition, new omnidirectional wheels which can be transformed to the conventional wheels depending on the driving conditions are proposed to compensate for less efficient omnidirectional drive mode. Various tests show that motion control of the OMR-SOW works satisfactorily and the proposed steering algorithm for CVT can provide higher energy efficiency than the algorithm using a fixed steering angle. In addition, it is shown that the differential drive mode can give better energy efficiency than the omnidirectional drive mode.

N-Step Sliding Recursion Formula of Variance and Its Implementation

  • Yu, Lang;He, Gang;Mutahir, Ahmad Khwaja
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.832-844
    • /
    • 2020
  • The degree of dispersion of a random variable can be described by the variance, which reflects the distance of the random variable from its mean. However, the time complexity of the traditional variance calculation algorithm is O(n), which results from full calculation of all samples. When the number of samples increases or on the occasion of high speed signal processing, algorithms with O(n) time complexity will cost huge amount of time and that may results in performance degradation of the whole system. A novel multi-step recursive algorithm for variance calculation of the time-varying data series with O(1) time complexity (constant time) is proposed in this paper. Numerical simulation and experiments of the algorithm is presented and the results demonstrate that the proposed multi-step recursive algorithm can effectively decrease computing time and hence significantly improve the variance calculation efficiency for time-varying data, which demonstrates the potential value for time-consumption data analysis or high speed signal processing.

A Study on the TICC(Time Interval Clustering Control) Algorithm which Using a Timing in MANET (MANET에서 Time Interval Clustering Control 기법에 관한 연구)

  • Kim, Young-Sam;Doo, Kyoung-Min;Kim, Sun-Guk;Lee, Kang-Whan;Chi, Sam-Hyeon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.629-630
    • /
    • 2008
  • MANET is depended on the property as like variable energy, high degree of mobility, location environments of nodes etc. So, in this paper, we propose an algorithm techniques which is TICC (Time Interval Clustering Control) based on energy value in property of each node for solving cluster problem. It provides improving cluster energy efficiency how can being node manage to order each node's energy level. TICC is clustering method. It has shown that Node's energy efficiency and life time are improved in MANET.

  • PDF

A Hybrid Algorithm to Reduce the Computation Time of Genetic Algorithm for Designing Binary Phase Holograms

  • Nguyen, The-Anh;An, Jun-Won;Choi, Jae-Kwang;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.264-268
    • /
    • 2003
  • A new approach to design binary phase holograms, with less computation time and equal effi-ciency compared with the genetic algorithm method, is proposed. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are tested in computer simulation and experimentally demonstrated.