• Title/Summary/Keyword: Time-Domain Antenna

Search Result 165, Processing Time 0.026 seconds

Numerical study of electromagnetic wave propagation characteristics in collapsed building for rescue radar applications

  • Kwon, Kyeol;Kim, Dong-Kyoo;Choi, Youngwoo;Cho, Jeahoon;Jung, Kyung-Young
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.546-553
    • /
    • 2018
  • Since the Gyeongju earthquakes in 2016, there have been increased research interests in the areas of seismic design, building collapse, and rescue radar applications in Korea. Ground penetrating radar (GPR) is a nondestructive electromagnetic method that is used for underground surveys. To properly design ground penetrating radar that detects buried victims precisely, it is important to study electromagnetic wave propagation channel characteristics in advance. This work presents an electromagnetic propagation environment analysis of a trapped victim for GPR applications. In this study, we develop a realistic collapse model composed of layered reinforced concrete and a victim positioned horizontally. In addition, the effects of rebars and the distance between the radar antenna and target are investigated. The numerical analysis presents the electromagnetic wave propagation characteristics, including amplitude loss and phase difference, in the 450-MHz and 1,500-MHz frequency band, and it shows the electric field distribution in the environment.

Ear Canal Insertable Size Wireless Transceiver for Hearing Aid

  • Woo, Sang-Hyo;Mohy-Ud-Din, Zia;Yoon, Young-Ho;Kim, Min-Kyu;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • The aim of this study was to test the feasibility of a wireless transceiver that can be inserted into the ear canal. The wireless technology could minimize the cosmetic problems of patients, and it can be applied to binaural hearing aids for improving speech perception. In order to implement the ear canal insertable transceiver, simple finite-difference time-domain (FDTD) simulations were carried out to determine the feasibility, and the hardware of the transceiver was implemented within the ear shell. The size of the implemented transceiver was only $7{\times}7mm$, and it could successfully transmit signals to external devices. In order to measure the radiation pattern, a simple RF phantom was used, and the maximum attenuation from the phantom was observed to be 23 dB when the reference antenna was placed at a distance of 2 m from the transmitter.

Novel Optical Properties of Si Nanowire Arrays

  • Lee, Munhee;Gwon, Minji;Cho, Yunae;Kim, Dong-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.179.1-179.1
    • /
    • 2014
  • Si nanowires have exhibited unique optical characteristics, including nano-antenna effects due to the guided mode resonance, significant optical absorption enhancement in wide wavelength and incident angle range due to resonant optical modes, graded refractive index, and scattering. Since Si poor optical absorption coefficient due to indirect bandgap, all such properties have stimulated proposal of new optoelectronic devices whose performance can surpass that of conventional planar devices. We have carried out finite-difference time-domain simulation studies to design optimal Si nanowire array for solar cell applications. Optical reflectance, transmission, and absorption can be calculated for nanowire arrays with various diameter, length, and period. From the absorption, maximum achievable photocurrent can be estimated. In real devices, serious recombination loss occurring at the surface states is known to limit the photovoltaic performance of the nanowire-based solar cells. In order to address such issue, we will discuss how the geometric parameters of the array can influence the spatial distribution of the optical field (resulting optical generation rate) in the nanowires.

  • PDF

A Free-Space Method for Measurement and Analysis of Dielectric Characteristics of Electromagnetic Absorbing Materials at Microwave Frequencies (자유공간 기법을 적응한 마이크로파 대역 전파흡수재의 유전 특성 분석)

  • 배근식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.73-82
    • /
    • 2003
  • For measurements and analysis of dielectric characteristics of planar slabs of microwave absorbing materials, I have applied a free-space method in the frequency range of 8~14 GHz. The measurement system for free-space method consists of transmit and receive antennas, mode transitions, precision coaxal cables, the network analyzer, and a computer Special Spot-focused horn lens antenna was used to eliminate diffraction effects. Diffraction effects at the edges of the sample are minimized by satisfying the condition for minimum transverse dimension of the plate and the beamwidth of the antennas at the focus. The time-domain gating feature of the network analyzer and the thru, reflect, and line(TRL) calibration technique were used to eliminate the effects of undesirable multiple reflections. The complex coefficients of reflection and transmission, $S_{11}$ and $S_{21}$, of planar samples were measured for standard materials such as Teflon, Rexolite$\textregistered$ 2200. The results were compared with existing measurement method. And I applied a free-space method for measurement to measure dielectric constants of some electromagnetic absorbing materials. Dielectric properties for the same samples were also measured with a 7mm coxial transmission line method for purposes of comparison with the free-space method.

FDTD Calculation for SAR Induced in a Head Model by the Electromagnetic Fields Irradiated from a Cellular Phone (휴대폰 전자파에 노출된 頭部에 흡수되는 SAR의 FDTD에 의한 해석)

  • 이윤경;임현준;우종우;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • The near field radiated from the monopole antenna of the cellular phone was calculated by using the modified finite difference time domain algorithm derived from the integral form of Maxwell's equations. Substituting the near field value into the differential form of Maxwell's equations, SAR's distribution in the human head was obtained. The human head was simulated by a model of 800,000 block cells with dielectric constant and conductivity. The cell size was taken to be 0.5 cm. the transmitted power of the cellular phone was assumed to be 0.6 watts at the frequency of 833 MHz. The distance between the head and the cellular phone was 2.0 cm, the maximum SAR induced in the human head was about 1.5 W/kg and was below the IEEE's upper safety limit of 1.6 W/kg.

  • PDF

A Design Method for Pre-Distortion Compensation of SAR Chirp Signal based on Envelop Sampling and Interpolation Filter (위성 탑재 영상레이다 첩 신호의 전치왜곡 보상을 위한 포락선 샘플링 및 보간 필터 기반의 설계 기법)

  • Lee, Young-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.347-354
    • /
    • 2022
  • The synthetic aperture radar(SAR) is an equipment that can acquire images in all weathers day and night based on radar signals. The on-board processor of satellite SAR generates transmission signal by digital signal processing, converts it into an analog signal and transmits to antenna. Until the transmission signal generated by on-board processor is output, the signal passes the transmission cables and analog devices. At this time, these hardware distort the signal and makes SAR performance worse. To improve the performance, pre-distortion technique is used. But, general pre-distortion using taylor series is not sufficient to compensate for the distortion. This paper suggests transmit signal design method with improved pre-distortion. This paper uses envelop sampling method and interpolation filter for frequency domain compensation. The proposed method accurately compensates the hardware distortion and reduces resource usage of FPGA. To analyze proposed method's performance, IRF characteristics are compared when the proposed method applies to signal with errors.

Performance and Jitter Effects Analysis of Single Bit Electro-Optical Sigma-Delta Modulators (단일 비트 전자-광학 시그마-델타 변조기의 성능 및 지터 효과 분석)

  • Nam, Chang-Ho;Ra, Sung-Woong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.706-715
    • /
    • 2012
  • Electro-optical sigma-delta modulators are the core module of digital receiver to digitize wideband radio-frequency signals directly at an antenna. Electro-optical sigma-delta modulators use a pulsed laser to oversample an input radio-frequency signals at two Mach-Zehnder Interferometer(MZI) and shape the quantization noise using a fiber-lattice accumulator. Decimation filtering is applied to the quantizer output to construct the input signal with high resolution. The jitter affects greatly on reconstructing the original input signal of modulator. This paper analyzes the performance of first order single bit electro-optical sigma-delta modulator in the time domain and the frequency domain. The performance of modulator is analyzed by using asynchronous spectral averaging of the reconstructed signal's spectrum in the frequency domain. The reference value of time jitter is presented by analyzing the performance of jitter effects. This kind of jitter value can be used as a reference value on the design of modulators.

Eigenimage-Based Signal Processing for Subsurface Inhomogeneous Clutter Reduction in Ground-Penetrating Radar Images (지하 탐사 레이더 영상에서 지하의 비균일 클러터 저감을 위한 고유 영상기반 신호처리)

  • Hyun, Seung-Yeup;Kim, Se-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1307-1314
    • /
    • 2012
  • To reduce the effects of clutters with subsurface inhomogenities in ground-penetrating radar(GPR) images, an eigenimage based signal-processing technique is presented. If the conventional eigenimage filtering technique is applied to B-scan images of a GPR survey, relatively homogeneous clutters such as antenna ringing, direct coupling between transmitting and receiving antennas, and soil-surface reflection, can be removed sufficiently. However, since random clutters of subsurface inhomogenities still remain in the images, target signals are distorted and obscured by the clutters. According to a comparison of the eigenimage filtering results, there is different coherency between subsurface clutters and target signals. To reinforce the pixels with high coherency and reduce the pixels with low coherency, the pixel-by-pixel geometric-mean process after the eigenimage filtering is proposed here. For the validity of the proposed approach, GPR survey for detection of a metal target in a randomly inhomogeneous soil is numerically simulated by using a random media generation technique and the finite-difference time-domain(FDTD) method. And the proposed signal processing is applied to the B-scan data of the GPR survey. We show that the proposed approach provides sufficient enhancement of target signals as well as remarkable reduction of subsurface inhomogeneous clutters in comparison with the conventional eigenimage filtering.

Comparison with SAR Patterns of Biological Objects Contacted with Coaxial Waveguide Antenna Using MUR and GPML ABCs in the FDTD Method (유한차분법에서 MUR과 GPML 흡수경계조건을 이용한 동축 도파관 안테나에 접촉된 생체의 SAR 패턴 비교)

  • 구성모;권광희;이창원;원철호;조진호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • The SAR patterns of biological objects contacted with coaxial waveguide antennal has been investigated, in which the biological object was modeled by a homogeneous and four-layered lossy human body. We derived the finite-difference time-domain(FDTD) algorithm and equation of MUR and generalized perfectly matched layer(GPML) ABCs in cylindrical coordination. The coupling between coaxial waveguide antenna and a biological object was analyzed by use of MUR and GPML ABCs in the FDTD method to obtain the absorbed power patterns in the media. The specific absorption rates (SAR) distribution which was corresponding to the temperature distribution was calculated in each region by use of the steady-state response in the FDTD method. The SAR patterns of the FDTD method using MUR absorbing boundary conditions(ABCs) was compared with those of the FDTD method using GPML ABCs. The comparison exhibits that the penetration depth of the SAR patterns using MUR ABCs is deeper than that of the SAR patterns using GPML ABCs because of loss in free space. However, the spread in the lateral directions of the SAR patterns using GPML ABCs is smaller than of the SAR patterns using MUR ABCs.

  • PDF

Measurement and Comparative Analysis of Propagation Characteristics in 3, 6, 10, and 17 GHz in Two Different Indoor Corridors (두 가지 서로 다른 실내 복도에서 3, 6, 10, 17 GHz의 전파 특성 측정 및 비교 분석)

  • Seong-Hun Lee;Byung-Lok Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1031-1040
    • /
    • 2023
  • Propagation characteristics in line-of-sight(LOS) paths in 3, 6, 10, and 17 GHz frequency bands were measured and analyzed in two different indoor corridors: second floors of Buildings D2 and E2. The measurement was designed to measure when the receiving antenna moved at 0.5 m intervals from 3 m to 30 m, while the transmission antenna was fixed. The analysis of the two indoor corridors was compared by applying basic transmission loss, root mean square (RMS) delay spread, and K-factor. For basic transmission loss, the loss coefficient of the floating intercept path loss model was higher in the indoor corridor of Building E2 than in that of Building D2. Similarly, the RMS delay spread in the time domain was greater in the indoor corridor of Building E2. However, the indoor corridor of Building D2 exhibited higher K-factor in the 3, 6, and 17 GHz bands with lower wave propagation in the 10 GHz band. Despite the 2 indoor corridors being identical, the propagation characteristics varied due to different internal structures and materials. The results provide measurement data for ITU-R Recommendations regarding various indoor environments.