• Title/Summary/Keyword: Time-Dependent Fracture Mechanics

Search Result 22, Processing Time 0.024 seconds

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

A Study of the Effect of Stress Waveform on the Behavior of High Temp. Fatigue Crack Propagation Using J Parameters (J파라미터를 이용한 고온피로균열전파 거동에 미치는 응력파형 영향의 연구)

  • Hur, Chung-Weon;Park, Won-Jo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.8-12
    • /
    • 2000
  • The fatigue crack propagation tests were performed in triangular and holding-time stress waveforms at $650^{\circ}C$. The behavior of fatigue crack propagation was investigated according to waveform. The analysis of high temperature fatigue crack propagation by the stress intensity factor range ${\Delta}K$, elastic fracture mechanics parameter, was not available. The behaviors of high temperature fatigue crack propagation by the J-integral(${\Delta}J_f$, J' and ${\Delta}J_c$), elasto-plastic fracture mechanics parameter, were investigated in a number of stress waveforms. The fast-fast waveform exhibited cycle-dependent(fatigue type), the slow-fast and the hold time with 500sec waveforms appear to be time-dependent(creep type) and the fast-slow and the hold time with 5, 25sec waveforms exhibited conbined behavior of both types(fatigue-creep conbined type).

  • PDF

A Three-Dimensional Progressive Failure Model for Joints Considering Fracture Mechanics and Subcritical Crack Growth in Rock (암석파괴역학에 의한 3차원 절리면의 진행성 파괴 모델)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • A three dimensional rock joint element was developed considering fracture mechanics and subcritical crack growth to simulate non-linear behavior and the progressive failure of rock joints. Using this 3-D joint element, joint shear tests of rock discontinuities were simulated by a numerical method. The asperities on the joint surface began to fail at stress levels lower than the rock fracture toughness and continued progressively due to subcritical crack growth. As a result of progressive failing in each and every asperity, the joint showed non-linear stress-time behavior including stress hardening/softening and the reaching of a residual stress.

Transition from Cycle-Dependent to Time-Dependent Fatigue Crack Propagation at Creep Temperature of SUS 304 Steel (SUS 304鋼 의 크리이프 溫度領域 에 관한 時間依存型 및 사이클依存型 疲勞크랙 傳播 의 遷移)

  • 유헌일;주원식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.539-547
    • /
    • 1985
  • The low-cycle fatigue crack growth behavior of SUS 304 Stainless steel was investigated at 650.deg. C by the nonlinear fracture mechanics. Crack Propagation can be separated in to cycle-dependent and time-dependent, the former is correlated with .DELTA. $J_{f}$ , J-intergral range and the latter is correlated with J', modified J integral. Transition from cycle-dependent to time-dependent crack growth was successfully predicted using the .betha. hypothesis, which was proposed by the authors on the basis of an analysis on the interaction of elastic and creep strain. To investigate the reliability of .betha.-hypothesis, experimenting by the change of stress-level, stress rate and frequency, following conclusions were obtained. (1) High temperature fatigue crack propagation was separated into cycle-dependent and time-dependent. (2) Transition of crack propagation was predicted by .DELTA. $J_{c}$/.DELTA.$_{f}$ or .betha. (3) Lower limit in cycle-dependent crack propagation was obtained..

Fracture analysis of inhomogeneous arch with two longitudinal cracks under non-linear creep

  • Victor I. Rizov;Holm Altenbach
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.15-29
    • /
    • 2023
  • In this paper, fracture analysis of a continuously inhomogeneous arch structure with two longitudinal cracks is developed in terms of the time-dependent strain energy release rate. The arch under consideration exhibits non-linear creep behavior. The cross-section of the arch is a rectangle. The material is continuously inhomogeneous along the thickness of the cross-section. The arch is loaded by two bending moments applied at its end sections. The mechanical behavior of the material is described by using a non-linear stress-strain-time relationship. The two longitudinal cracks are located symmetrically with respect to the mid-span of the arch. Due to the symmetry, only half of the arch is considered. Time-dependent solutions to strain energy release rate are obtained by analyzing the balance of the energy. For verification, time-dependent solutions to the strain energy release rate are derived also by considering the time-dependent complementary strain energy. The evolution of the strain energy release rate with the time is analyzed. The effects of material inhomogeneity, locations of the two cracks along the thickness of the arch and the magnitude of the external loading on the time-dependent strain energy release rate are evaluated.

A Study on Fatigue Crack Growth Behavior at a Creep Temperature Region in SUS 304 Stainless Steel (SUS 304 강의 크리프 온도역에 있어서 피로균열성장거동에 관한 연구)

  • 주원식;오세욱;조석수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.548-554
    • /
    • 1994
  • The high temperature fatigue crack growth behavior of SUS 304 stainless steel at $550^{\circ}C$ and $650^{\circ}C$ was investigated under various kinds of stress ratio and frequency in sinusoidal waveform on the basis of the non-linear fracture mechanics. The result arranging crack growth rate by modified J-integral J' showed influence of stress ratio and frequency. All the data obtained under the test at $550^{\circ}C$ were plotted within data band of da/dN-${\triangle}J_f$ relationship for cycle-dependent crack growth. On the basis of static creep and cycle-dependent data band; both time- and cycle-dependent crack growth behavior was observed under loading conditions at $650^{\circ}C$, but cycle-dependent crack growth behavior predominantly appeared and time-dependent crack growth behaviour was little observed under loading conditions at $550^{\circ}C$. Fractographic examinations for fracture surface indicated that the fracture mode was generally transgranular. The stripes were found on fracture surface and each stripe was accompanied by a crack tip blunting and an abrupt increase in the load-point displacement. The $J'_{an}$ had a validity in case of $650^{\circ}C, but scarcely had it in case of $550^{\circ}C$.

Progressive Failure of a Rock Slope by the Subcritical Crack Growth of Asperities Along Joints (절리면의 응력확대계수가 파괴인성보다 작은 암반사면의 진행성 파괴)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.95-106
    • /
    • 2009
  • Numerical analysis of the progressive failure of a rock slope was conducted using a 3-D rock joint element considering fracture mechanics and subcritical crack growth of asperities in the rock joints. Even though the stress state in the rock slope is not changing, the elapse of time causes subcritical crack growth to break asperities in the joints. The increase of broken asperities causes failure of joints in the rock slope and the increase of failed joints results in failure of a jointed rock slope. As a result, the progressive failure of a jointed rock slope due to the gradual breaking of small asperities along joints generated by subcritical crack growth occurs at a lower stress than if rock failure occurred by exceeding the static strength or fracture toughness.

Dynamic Stress Intensity Factors and Dynamic Crack Propagation Velocities in Polycarbonate WL-RDCB Specimen (WL-RDCB 시편의 동적 균열전파속도와 동적 응력확대계수)

  • 정석주;한민구
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 1996
  • Dynamic fracture characteristics of Polycarbonate WL-RDCB specimen were investigated. The dynamic crack propagation velocities in these specimens were measured by using both high speed camera system and silver paint grid method developed and justified in the INHA Fracture Mechanics Laboratory. The measured crack propagation velocities were fed into the INSAMCR code(a dynamic finite element code which has been developed in the INBA Fracture Mechanics Laboratory) to extract the dynamic stress intensity factors. It has been confirmed that both dynamic crack arrest toughness and the static crack arrest toughness depend on both the geometry and the dynamic crack propagation velocity of specimens. The maximum dynamic crack propagation velocity of Polycarbonate WL-RDCB specimen was found to be dependent on the material property, geometry and the type of loading. The dynamic cracks in these Polycarbonate WL-RDCB specimens seemed to propagate in a successive manner, involving distinguished 'propagation-arrest-propagation-arrest' steps on the microsecond time scale. It was also found that the relat-ionship between dynamic stress intensity factor and dynamic crack propagation velocities might be represented by the typical '$\Gamma$'shape.

  • PDF

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles

  • Jian, Xiaobin;Kong, Xiangzhe;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1575-1588
    • /
    • 2019
  • Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.

Transient response of a piezoelectric layer with a penny-shaped crack under electromechanical impacts

  • Feng, Wenjie;Li, Yansong;Ren, DeLiang
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.163-175
    • /
    • 2006
  • In this paper, the dynamic response of a piezoelectric layer with a penny-shaped crack is investigated. The piezoelectric layer is subjected to an axisymmetrical action of both mechanical and electrical impacts. Two kinds of crack surface conditions, i.e., electrically impermeable and electrically permeable, are adopted. Based upon integral transform technique, the crack boundary value problem is reduced to a system of Fredholm integral equations in the Laplace transform domain. By making use of numerical Laplace inversion the time-dependent dynamic stress and electric displacement intensity factors are obtained, and the dynamic energy release rate is further derived. Numerical results are plotted to show the effects of both the piezoelectric layer thickness and the electrical impact loadings on the dynamic fracture behaviors of the crack tips.