• Title/Summary/Keyword: Time to frequency conversion

검색결과 164건 처리시간 0.024초

위성 수신기용 광대역 튜너 시스템의 CMOS 단일칩화에 관한 연구 (A CMOS Fully Integrated Wideband Tuning System for Satellite Receivers)

  • 김재완;류상하;서범수;김성남;김창봉;김수원
    • 대한전자공학회논문지SD
    • /
    • 제39권7호
    • /
    • pp.7-15
    • /
    • 2002
  • The digital DBS tuner is designed and implemented in a CMOS process using a direct-conversion architecture that offers a high degree of integration. To generate mathched LO I/Q quadrature signals covering the total input frequency range, a fully integrated ring oscillator is employed. And, to decrease a high level of phase noise of the ring oscillator, a frequency synthesizer is designed using a double loop strucure. This paper proposes and verifies a band selective loop for fast frequency switching time of the double loop frequency synthesizer. The down-conversion mixer with source follower input stages is used for low voltage operation. An experiment implementation of the frequency synthesizer and mixer with integrated a 0.25um CMOS process achieves a switching time of 600us when frequency changes from 950 to 2150MHz. And, the experiment results show a quadrature amplitude mismatch of max. 0.06dB and a quadrature phase mismathc of max. >$3.4^{\circ}$.

dB과 cm/sec간의 환산실험식 (Conversion Equation dB (Rion) to PPV(cm/sec))

  • 허진
    • 화약ㆍ발파
    • /
    • 제9권2호
    • /
    • pp.3-7
    • /
    • 1991
  • The Problem of vibration Inflence to housing Construction fields has arised at the begining of 1970, at That time I used Lion(VM -l2B) which recorded only dB Demension. On the 1980's I have been used lnstantel made blastemate(DS-477), modern Instrument for measuring speed, Acc, frequency and placement. but The most of Jobsite used Lion I Carried out the empirical equation of conversion dB to cm /sec as follows. Single free face : dB = 140PPV + 30 double free face : dB = 143PPV + 20 Above equation Could apply on Rock type 3(soft rock)

  • PDF

Estimation of Displacements Using the Transformed Response in Time and Frequency Domain

  • Jung, Beom-Seok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.44-50
    • /
    • 2003
  • If the accelerometers are used in measuring the response, the absolute values of the velocity and displacement are not usually obtainable because their initial values are not accounted for in the integration of the acceleration response. A new dynamic response conversion algorithm of both the time domain and the frequency domain is proposed for the problem in estimating the displacement data by defining the transformed responses. In this algorithm, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. In the response conversion procedure of the frequency domain, the identified response according to the frequency can be estimated by changing over the limits of integration. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

  • PDF

디지털 고주파 메모리 구현에 관한 연구 (A Study on the Implementation of Digital Radio Frequency Memory)

  • 유병석;김영길
    • 한국정보통신학회논문지
    • /
    • 제14권9호
    • /
    • pp.2164-2170
    • /
    • 2010
  • Digital radio frequency memory (이하 DRFM)은 입력되는 RF신호를 저장 후 필요한 시점에 입력된 RF신호로 복원하여 출력하는 기능을 가진 장치로써 Jammer, EW시뮬레이터, Target Echo Generator[1] 등 사용되는 분야가 광범위하다. 본 논문에서는 고주파 입/출력모듈, 국부 발진모듈로 구성된 고주파부와 디지털 처리부로 이루어진 DRFM의 하드웨어적 구현 방안을 제안한다. 그리고 펄스형태의 RF신호를 양자화하는 ADC(A/D conversion), 이 데이터를 저장하고 재생신호를 생산하는 FPGA와 RF 신호를 생산하는 DAC(D/A conversion)로 구성되는 디지털 처리부에서 복제된 신호 생성방안을 제안한다. 이렇게 제안된 방안을 적용하여 제작한 후 모의 신호를 입력하여 얻은 시험결과를 통하여 이 제안방안의 타당성을 확인한다.

A New Frequency Controlled Half-bridge Converter with Hold-up Time Extension Circuit

  • Kim, Duk-You;Kim, Jae-Kuk;Lee, Woo-Jin;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.382-384
    • /
    • 2008
  • Hold-up time is a special requirement for the front end DC/DC converter in a server power supply. It forces the converter with the variable switching frequency to operate in a wide switching frequency range, which makes the regulation difficult and reduces the power density. In this paper a novel frequency controlled half bridge converter with the hold-up time extension circuit is proposed. During the hold-up time, the auxiliary switches are turned on, thus the resonant inductance is reduced and the voltage conversion ratio is increased. Therefore, the output capacitor of the power factor correction (PFC) circuit can be decreased, and the converter can have high power density. The proposed converter is verified by experimental results from a prototype with 700W, 400V input, and 12V output.

  • PDF

Retrieving the Time History of Displacement from Measured Acceleration Signal

  • Han, Sangbo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.197-206
    • /
    • 2003
  • It is intended to retrieve the time history of displacement from measured acceleration signal. In this study, the word retrieving means reconstructing the time history of original displacement signal from already measured acceleration signal not just extracting various information using relevant signal processing techniques. Unlike extracting required information from the signal, there are not many options to apply to retrieve the time history of displacement signal, once the acceleration signal is measured and recorded with given sampling rate. There are two methods, in general, to convert measured acceleration signal into displacement signal. One is directly integrating the acceleration signal in time domain. The other is dividing the Fourier transformed acceleration signal by the scale factor of - $\omega$$^2$and taking the inverse Fourier transform of it. It turned out both the methods produced a significant amount of errors depending on the sampling resolution in time and frequency domain when digitizing the acceleration signals. A simple and effective way to convert the time history of acceleration signal into the time history of displacement signal without significant errors is studied here with the analysis on the errors involved in the conversion process.

차량용 레이더를 위한 26GHz 40nm CMOS 광대역 가변 이득 증폭기 설계 (26GHz 40nm CMOS Wideband Variable Gain Amplifier Design for Automotive Radar)

  • 최한웅;최선규;이은규;이재은;임정택;이경혁;송재혁;김상효;김철영
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.408-412
    • /
    • 2018
  • 이 논문에서는 40nm CMOS 공정을 이용하여 제작된 26GHz 가변 이득 증폭기에 대한 연구를 수행하였다. 79GHz를 사용하는 자동차 레이더의 경우 주파수 특성상 회로 전체를 79GHz로 설계 및 매칭 하기 보다는 Down conversion 하여 낮은 주파수대역으로 구동하거나 Up conversion 전에 낮은 주파수 대역을 이용하는 것이 설계 및 구동에 유리하다. 실제적으로 TTD(True Time Delay)를 통해 시간지연을 이용하는 Phased Array System 의 경우에도 현재 기술로는 낮은 주파수로 Down conversion하는 것이 오차를 줄이고 실제적 시간지연을 구현하는데 좋다. 79GHz 주파수의 1/3인 26GHz 주파수 대역에서 동작하는 VGA(Variable Gain Amplifier)에 대하여 설계하였고 1-stage의 cascode amplifier 형태로 구성된 회로에서 VDD : 1V, Bias 0.95V, S11은 < -9.8dB(Mea. High gain mode), S22 <-3.6dB(Mea. High gain mode), Gain : 2.69dB(Mea. High gain mode), P1dB : -15 dBm (Mea. High gain mode) 로 설계되었다. Low gain mode 에서는 S11은 < -3.3dB(Mea. Low gain mode), S22 < -8.6dB(Mea. Low gain mode), Gain : 0dB(Mea. Low gain mode), P1dB : -21 dBm (Mea. Low gain mode)로 설계되었다.

써멀 메니지먼트(Thermal Management)에 의한 3상 전압형 인버터의 전력손실 최적화 설계 (Optimal Design of Power Loss for 3 Phase Voltage Source Inverter by using Thermal Management)

  • 조수억;박성준
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1757-1762
    • /
    • 2007
  • Recently, the demand for the low cost power conversion equipment is rapidly increased. To develop this three phase voltage source inverter, optimum power conversion equipment to system is designed. The optimum operation method to minimize the power loss also satisfy the life time of the power electronics that is request in the present industry. In this paper, the efficient operating method to change of the acceleration, jerk, and switching frequency in the interval of acceleration is selected to optimize the power loss and life time of the power electronics by using the elevator model. So, we proposed the method that 50[A] rating power electronics is adopted in 9[kW] load.

GUIDED WAVE MODE IDENTIFICATION USING WAVELET TRANSFORM

  • Park, Ik-Keun;Kim, Hyun-Mook;Kim, Young-Kwon;J. L. Rose
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.79-85
    • /
    • 2003
  • One of unique characteristics of guided waves is a dispersive behavior that guided wave velocity changes with an excitation frequency and mode. In practical applications of guided wave techniques, it is very important to identify propagating modes in a time-domain waveform for determination of defect location and size. Mode identification can be done by measurement of group velocity in a time-domain waveform. Thus, it is preferred to generate a single or less dispersive mode But in many cases, it is difficult to distinguish a mode clearly in a time-domain waveform because of superposition of multi modes and mode conversion phenomena. Time-frequency analysis is used as efficient methods to identify modes by presenting wave energy distribution in a time-frequency. In this study, experimental guided wave mode identification is carried out in a steel plate using time-frequency analysis methods such as wavelet transform. The results are compared with theoretically calculated group velocity dispersion curves. The results are in good agreement with analytical predictions and show the effectiveness of using the wavelet transform method to identify and measure the amplitudes of individual guided wave modes.

  • PDF

웨이블릿 변환을 이용한 유도초음파의 모드 확인 (Guided Wave Mode Identification Using Wavelet Transform)

  • Ik-Keun Park
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.94-100
    • /
    • 2003
  • One of unique characteristics of guided waves is a dispersive behavior that guided wave velocity changes with an excitation frequency and mode. In practical applications of guided wave techniques, it is very important to identify propagating modes in a time-domain waveform for determination of detect location and size. Mode identification can be done by measurement of group velocity in a time-domain waveform. Thus, it is preferred to generate a single or less dispersive mode But, in many cases, it is difficult to distinguish a mode clearly in a time-domain waveform because of superposition of multi modes and mode conversion phenomena. Time-frequency analysis is used as efficient methods to identify modes by presenting wave energy distribution in a time-frequency. In this study, experimental guided wave mode identification is carried out in a steel plate using time-frequency analysis methods such as wavelet transform. The results are compared with theoretically calculated group velocity dispersion own. The results are in good agreement with analytical predictions and show the effectiveness of using the wavelet transform method to identify and measure the amplitudes of individual guided wave modes.