• Title/Summary/Keyword: Time to Collision

Search Result 1,090, Processing Time 0.03 seconds

Maritime Officers' Strategies for Collision Avoidance in Crossing Situations

  • Hong, Seung Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.525-533
    • /
    • 2017
  • Objective: The aim of this study is to investigate maritime officers' strategies to avoid the ship collision in crossing situations. Background: In a situation where there is a risk of collision between two ships, maritime officers can change the direction and speed of the own-ship to avoid the collision. They have four options to select; adjusting the speed only, the direction only, both the speed and direction at the same time and no action. Research questions were whether the strategy they are using differs according to the shipboard experience of maritime officers and the representation method of ARPA (automatic radar plotting aid) - radar graphic information. Method: Participants were 12. Six of them had more than 3 years of onboard experience, while the others were 4th grade students at Korea Maritime and Ocean University. For each participant, 32 ship encounter situations were provided with ARPA-radar information. 16 situations were presented by the north-up display and 16 situations were presented by the track-up display. Participants were asked to decide how to move the own-ship to avoid the ship collision for each case. Results: Most participants attempted to avoid the collision by adjusting the direction of the ship, representing an average of 22.4 times in 32 judgment trials (about 70%). Participants who did not have experience on board were more likely to control speed and direction at the same time than participants with onboard experience. Participants with onboard experience were more likely to control the direction of the ship only. On the other hand, although the same ARPA Information was provided to the participants, the participants in many cases made different judgments depending on the method of information representation; track-up display and north-up display. It was only 25% that the participants made the same judgment under the same collision situations. Participants with onboard experience did make the same judgment more than participants with no onboard experience. Conclusion: In marine collision situations, maritime officers tend to avoid collisions by adjusting only the direction of their ships, and this tendency is more pronounced among maritime officers with onboard experience. The effect of the method of information representation on their judgment was not significant. Application: The results of this research might help to train maritime officers for safe navigation and to design a collision avoidance support system.

Validation on the algorithm of estimation of collision risk among ships based on AIS data of actual ships' collision accident (선박충돌사고 AIS 데이터 기반 선박 충돌위험도 추정 알고리즘 검증에 관한 연구)

  • Son, Nam-Sun;Kim, Sun-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.180-181
    • /
    • 2010
  • An estimation algorithm of collision risk among multiple ships has been developed in order to reduce human error and prevent collision accidents. The algorithm is designed to calculate the collision risk among ships based on Fuzzy theory by using AIS data as traffic information. In this paper, to validate the algorithm, the AIS data of actual collision accident, which occurred between a product carrier and a cargo carrier in Busan harbor in 2009 are collected. The replay simulation is carried out on the actual AIS data and the collision risk is calculated in real time. In this paper, the features of the estimation algorithm of collision risk and the results of replay simulation based on AIS data of actual collision accident are discussed.

  • PDF

Validation on the Algorithm of Estimation of Collision Risk among Ships based on AIS Data of Actual Ships' Collision Accident (선박충돌사고의 AIS 데이터를 이용한 선박 충돌위험도 추정 알고리즘 검증에 관한 연구)

  • Son, Nam-Sun;Kim, Sun-Young
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.727-733
    • /
    • 2010
  • An estimation algorithm of collision risk among multiple ships has been developed in order to reduce human error and prevent collision accidents. The algorithm is designed to calculate the collision risk among ships based on Fuzzy theory by using AIS data as traffic information. In this paper, to validate the algorithm, the AIS data of actual collision accident, which occurred between a product carrier and a cargo carrier in Busan harbor in 2009 are collected. The replay simulation is carried out on the actual AIS data and the collision risk is calculated in real time. In this paper, the features of the estimation algorithm of collision risk and the results of replay simulation based on AIS data of actual collision accident are discussed.

Adaptive Slot-Count Selection Algorithm based on Tag Replies in EPCglobal Gen-2 RFID System

  • Lim, In-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.653-655
    • /
    • 2011
  • EPCglobal proposed a Q-algorithm, which is used for selecting a slot-count in the next query round. However, it is impossible to allocate an optimized slot-count because the original Q-algorithm did not define an optimized weight C value. In this paper, we propose an adaptive Q-algorithm, in which we differentiate the weight values with respect to collision and empty slots. The weight values are defined with the identification time as well as the collision probability.

  • PDF

Methodology for Evaluating Real-time Rear-end Collision Risks based on Vehicle Trajectory Data Extracted from Video Image Tracking (영상기반 실시간 후미추돌 위험도 분석기법 개발)

  • O, Cheol;Jo, Jeong-Il;Kim, Jun-Hyeong;O, Ju-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.173-182
    • /
    • 2007
  • An innovative feature of this study is to propose a methodology for evaluating safety performance in real time based on vehicle trajectory data extracted from video images. The essence of evaluating safety performance is to capture unsafe car-following events between individual vehicles traveling surveillance area. The proposed methodology applied two indices including real-time safety index (RSI) based on the concept of safe stopping distance and time-to-collision (TTC) to the evaluation of safety performance. It is believed that outcomes would be greatly utilized in developing a new generation of video images processing (VIP) based traffic detection systems capable of producing safety performance measurements. Relevant technical challenges for such detection systems are also discussed.

A mathematical approach to motion planning for time-varying obstacle avoidance (시변 장애물 회피 동작 계획을 위한 수학적 접근 방법)

  • 고낙용;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.388-393
    • /
    • 1990
  • A robot manipulator and an obstacle are described mathematically in joint space, with the mathematical representation for the collision between the robot manipulator and the obstacle. Using these descriptions, the robot motion planning problem is formulated which can be used to avoide a time varying obstacle. To solve the problem, the constraints on motion planning are discretized in joint space. An analytical method is proposed for planning the motion in joint space from a given starting point to the goal point. It is found that solving the inverse kinematics problem is not necessary to get the control input to the joint motion controller for collision avoidance.

  • PDF

A Study on the Threshold of Avoidance Sector in the New Evaluation of Collision Risk (신 충돌위험도평가에서 피항구역의 문턱값 결정에 관한 연구)

  • Jeong Tae-Gweon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.57-60
    • /
    • 2004
  • Evaluating the risk of collision quantitatively plays a key role in developing the expert system of navigation and collision avoidance. This study analysed thoroughly how to determine the thresholds as described in the new evaluation of collision risk using sech function, and developed the appropriate equation as applicable.

  • PDF

A Study on Performance Comparison of COTS Operating Systems for a Mission Computer Using UAV Collision Avoidance Algorithm (무인기 충돌회피 알고리즘을 이용한 임무컴퓨터용 상용기성품 운영체계 성능 비교에 대한 연구)

  • Yang, Jun-Mo;Jeon, Yu-Ji;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.6-11
    • /
    • 2016
  • There has been an increase in the number of researches on the segment for commercialization after developing avionics systems. In this paper, we have applied a commercial off-the-shelf(COTS) operating systems in an aircraft mission computer. We used UAV collision avoidance algorithms to compare the performance of COTS operating systems. The UAV collision avoidance algorithms were tested on different operating systems to compare the performances of the operating systems. The measured parameters are memory usage and processing time. We have verified that the UAV collision avoidance algorithms worked successfully and compared the performance of each operating system.

A Study on Determination of Gradient Coefficients in the New Evaluation of Collision Risk (신 충돌위험도평가의 기울기계수 결정에 관한 연구)

  • Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.351-357
    • /
    • 2003
  • Evaluating the risk of collision quantitatively plays a key role in developing the expert system of navigation and collision avoidance. This study analysed theoretically and thoroughly how to determine the gradient coefficients as described in the new evaluation of collision risk using sech function, and suggested the appropriate values as applicable.

선박 충돌사고 재현 및 분석을 위한 시뮬레이터 구축

  • 박봉수;천대일
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.10b
    • /
    • pp.129-134
    • /
    • 2000
  • In this paper, we proposed a simulator for reconstructing and analyzing vessel collision accidents happened at sea and we verified validity of the system by applying it to some collision accidents. This system will offer us to advantage of time and human power by contributing to automation of judge's decision.

  • PDF