• Title/Summary/Keyword: Time optimal

Search Result 9,444, Processing Time 0.037 seconds

Robust Time-Optimal Control for Coarse/Fine Dual-Stage Systems

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.317-320
    • /
    • 1999
  • A robust end time optimal conかof strategy for dual-stage servo system is presented. The time optimal trajectory for a mass-damper system is determined and given os a reference input to the servo system. The feedback controller is constructed so that the fine stage tracks the coarse stage errors and robustly designed as the“perturbation compensated sliding mode control(PCSMC)”law, a combination of slid-ing mode controller(SMC) and perturbation observer(PO). In addition, a null motion controller which regulates the fine stage at its neutral position is designed based on the“dynamic consistency”So, the overall dual-stage servo system exhibits the robust and time-optimal performance. The inherent merit and performance of the dual-stage system will be shown.

  • PDF

The Comparative Study of Software Optimal Release Time of Finite NHPP Model Considering Half-Logistic and Log-logistic Distribution Property (반-로지스틱과 로그로지스틱 NHPP 분포 특성을 이용한 소프트웨어 최적방출시기 비교 연구)

  • Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. In the course of correcting or modifying the software, finite failure non-homogeneous Poisson process model, presented and was proposed release policies of the life distribution, half-logistic and log-logistic distributions model which used to an area of reliability because of various shape and scale parameter. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, the parameter estimation using maximum likelihood estimation of failure time data make out, and software optimal release time was estimated.

Design of an Arm Section for a Direct Drive SCARA Robot having the Minimum Cycle Time (직접구동방식 수평다관절형 로봇의 최소 싸이클시간을 갖는 로봇팔의 단면설계)

  • Kang, B.S.;Park, K.H.;Kwak, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.165-172
    • /
    • 1995
  • Many algorithms to enhance a speed performance of a robot have been studied, but it's rare to consider disign aspect of a robot arm for time optimal problem. In this paper, section demensions of a robot arm and a velocity profile of an end-effector were optimally designed to minimize the cycle time. Capacity of actuators, deflections of end-effector, and a fundamental natural frequency of the robot arm were constrained in optimal design. For a given path with a trapezoidal velocity profile, torques of each joint were calculated using the inverse kinematics and dynamics. For the SCARA type robot which is mainly used for assembly tasks, the time optimal design of each robot arm id presented with the above constraints.

  • PDF

Optimal Burn-In Procedures for a System Performing Given Mission

  • Cha, Ji-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.861-869
    • /
    • 2006
  • Burn-in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, the problem of determining optimal burn-in time for a system which performs given mission is considered. It is assumed that the given mission time is not a fixed constant but a random variable which follows an exponential distribution. Assuming that the underlying lifetime distribution of a system has an eventually increasing failure rate function, an upper bound for the optimal burn-in time which maximizes the probability of performing given mission is derived. The obtained result is also applied to an illustrative example.

  • PDF

An optimal continuous type investment policy for the surplus in a risk model

  • Choi, Seung Kyoung;Lee, Eui Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.91-97
    • /
    • 2018
  • In this paper, we show that there exists an optimal investment policy for the surplus in a risk model, in which the surplus is continuously invested to other business at a constant rate a > 0, whenever the level of the surplus exceeds a given threshold V > 0. We assign, to the risk model, two costs, the penalty per unit time while the level of the surplus being under V > 0 and the opportunity cost per unit time by keeping a unit amount of the surplus. After calculating the long-run average cost per unit time, we show that there exists an optimal investment rate $a^*$>0 which minimizes the long-run average cost per unit time, when the claim amount follows an exponential distribution.

OPTIMAL PORTFOLIO CHOICE IN A BINOMIAL-TREE AND ITS CONVERGENCE

  • Jeong, Seungwon;Ahn, Sang Jin;Koo, Hyeng Keun;Ahn, Seryoong
    • East Asian mathematical journal
    • /
    • v.38 no.3
    • /
    • pp.277-292
    • /
    • 2022
  • This study investigates the convergence of the optimal consumption and investment policies in a binomial-tree model to those in the continuous-time model of Merton (1969). We provide the convergence in explicit form and show that the convergence rate is of order ∆t, which is the length of time between consecutive time points. We also show by numerical solutions with realistic parameter values that the optimal policies in the binomial-tree model do not differ significantly from those in the continuous-time model for long-term portfolio management with a horizon over 30 years if rebalancing is done every 6 months.

Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model (ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

On the Largest Optimal Stopping Time

  • Ahn, Wi-Chong;Park, Bong-Dae;Lim, Jae-Kyu
    • Journal of the Korean Statistical Society
    • /
    • v.12 no.2
    • /
    • pp.91-94
    • /
    • 1983
  • The structure of the largest optimal stopping time in the discete parameter processes is obtained by using the Doob decompositon of supermartingales.

  • PDF

Optimal Sensing Time for Maximizing the Throughput of Cognitive Radio Using Superposition Cooperative Spectrum Sensing

  • Vu-Van, Hiep;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.221-227
    • /
    • 2015
  • Spectrum sensing plays an essential role in a cognitive radio network, which enables opportunistic access to an underutilized licensed spectrum. In conventional cooperative spectrum sensing (CSS), all cognitive users (CUs) in the network spend the same amount of time on spectrum sensing and waste time in remaining silent when other CUs report their sensing results to the fusion center. This problem is solved by the superposition cooperative spectrum sensing (SPCSS) scheme, where the sensing time of a CU is extended to the reporting time of the other CUs. Subsequently, SPCSS assigns the CUs different sensing times and thus affects both the sensing performance and the throughput of the system. In this paper, we propose an algorithm to determine the optimal sensing time of each CU for SPCSS that maximizes the achieved system throughput. The simulation results prove that the proposed scheme can significantly improve the throughput of the cognitive radio network compared with the conventional CSS.