• 제목/요약/키워드: Time domain cross-correlation

검색결과 62건 처리시간 0.023초

개선된 혼성영역 교차상관법에 의한 G.723.1의 피치검색시간 단축에 관한 연구 (A Study on the Pitch Search Time Reduction of G.723.1 Vocoder by Improved Hybrid Domain Cross-correlation)

  • 조왕래;최성영;배명진
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2324-2328
    • /
    • 2010
  • In this paper we proposed a new algorithm that can reduce the open-loop pitch estimation time of G.723.1. The time domain cross-correlation method is simple but has long processing time by recursive multiplication. For reduction of processing time, we use the method that compute the cross-correlation by multiplying the Fourier value of speech by it's complex conjugate. Also, we can reduce the processing time by omitting the bit-reversing of FFT and IFFT for time-frequency domain transform. As a result, the processing time of improved hybrid domain cross-correlation algorithm is reduced by 67.37% of conventional time domain cross-correlation.

잔향 수조에서의 시간 이력 수음 신호 간 교차상관을 이용한 수중 음속 계측 방법에 관한 실험적 검증 (Experimental Validation on Underwater Sound Speed Measurement Method Using Cross-Correlation of Time-Domain Acoustic Signals in a Reverberant Water Tank)

  • 이주엽;김국현;박성주;조대승
    • 대한조선학회논문집
    • /
    • 제61권1호
    • /
    • pp.1-7
    • /
    • 2024
  • Underwater sound speed is an important analysis parameter on an estimation of the underwater radiated noise (URN) emitted from vessels. This paper aims to present an underwater sound speed measurement procedure using a cross-correlation of time-domain acoustic signals and validate the procedure through an experiment in a reverberant water tank. For the purpose, time-domain acoustic signals transmitted by a Gaussian pulse excitation from an acoustic projector have been measured at 20 hydrophone positions in the reverberant water tank. Then, the sound speed in water has been calculated by a linear regression using 190 cross-correlation cases of distances and time lags between the received signals and the result has been compared with those estimated by the existing empirical formulae. From the result, it is regarded that the presented experimental procedure to measure an underwater sound speed is reliably applicable if the time resolution is sufficiently high in the measurement.

TFDR 기법을 이용한 Coaxial Cable상에 존재하는 다양한 결함 감지 및 추정 (Detection and Estimation of Multiple Faults on a Coaxial Cable Based on TFDR Algorithm)

  • 송은석;신용준;육종관;박진배
    • 한국전자파학회논문지
    • /
    • 제14권10호
    • /
    • pp.1079-1088
    • /
    • 2003
  • 본 논문에서는 도선상의 결함 감지 및 추정 방법인 고분해능 시간-주파수 반사측정기법(time-frequency domain reflectometry)을 제안한다. 이 방법은 관측된 신호를 시간과 주파수 영역에서 동시에 분석 가능한 시간-주파수 상호 상관 관계(time-frequency cross correlation) 특성을 채택하였다. 제안된 방법인 TFDR의 정확도는 고주파용 coaxial cable을 가지고 실험을 통하여 기존의 방식들과 비교 검증하였다. 제안된 알고리즘의 다양한 결함들에 대한 감지 및 추정 결과, 기존의 방법에 비해 월등하다는 것을 명백히 나타내었다.

Fast Quadtree Based Normalized Cross Correlation Method for Fractal Video Compression using FFT

  • Chaudhari, R.E.;Dhok, S.B.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.519-528
    • /
    • 2016
  • In order to achieve fast computational speed with good visual quality of output video, we propose a frequency domain based new fractal video compression scheme. Normalized cross correlation is used to find the structural self similar domain block for the input range block. To increase the searching speed, cross correlation is implemented in the frequency domain using FFT with one computational operation for all the domain blocks instead of individual block wise calculations. The encoding time is further minimized by applying rotation and reflection DFT properties to the IFFT of zero padded range blocks. The energy of overlap small size domain blocks is pre-computed for the entire reference frame and retaining the energies of the overlapped search window portion of previous adjacent block. Quadtree decompositions are obtained by using domain block motion compensated prediction error as a threshold to control the further partitions of the block. It provides a better level of adaption to the scene contents than fixed block size approach. The result shows that, on average, the proposed method can raise the encoding speed by 48.8 % and 90 % higher than NHEXS and CPM/NCIM algorithms respectively. The compression ratio and PSNR of the proposed method is increased by 15.41 and 0.89 dB higher than that of NHEXS on average. For low bit rate videos, the proposed algorithm achieve the high compression ratio above 120 with more than 31 dB PSNR.

절연전선 결함 위치 추정에 대한 시간-주파수 영역 반사파 계측법의 적용 (Estimation of Fault Location on a Power Line using the Time-Frequency Domain Reflectometry)

  • 두승호;곽기석;박진배
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.268-275
    • /
    • 2008
  • In this paper, we introduce a new method for detecting and estimating faults on a power line using the time-frequency domain reflectometry system. The system rests upon time-frequency signal analysis and uses a chirp signal which is multiplied by Gaussian envelope. The chirp signal is used as a reference signal, and we can get the reflected signal from a fault on a wire. To detect and estimate faults, we analyze the reflected signal by Wigner time-frequency distribution function and normalized time-frequency cross correlation function. In this paper we design an optimal reference signal for power line and implement a system for estimating fault distance on a power line with the TFDR implemented by PXI equipments. This approach is verified by some experiments with HIV 2.25mm power lines.

케이블 내 근접 결함 추정을 위한 영상 처리 기반의 시간 주파수 영역 반사파 계측법 (Image Processing Based Time-Frequency Domain Reflectometry for Estimating the Fault Location Close to the Applied Signal Point)

  • 정종민;이춘구;윤태성;박진배
    • 전기학회논문지
    • /
    • 제63권12호
    • /
    • pp.1683-1689
    • /
    • 2014
  • In this paper, we propose an image processing based time-frequency domain reflectometry(TFDR) in order to estimate the fault location of a cable. The Wigner-Ville distribution is used for analysis in both the time domain and the frequency domain when the conventional TFDR estimates the fault location in a cable. However, the Winger-Ville distribution is a bi-linear function, and hence the cross-term is occurred. The conventional TFDR cannot estimate the accurate fault location due to the cross-term in case the fault location is close to the position where the reference signal is applied to the cable. The proposed method can reduce the cross-term effectively using binarization and morphological image processing, and can estimate the fault location more accurately using the template matching based cross correlation compared to the conventional TFDR. To prove the performance of the proposed method, the actual experiments are carried out in some cases.

CMP cross-correlation analysis of multi-channel surface-wave data

  • Hayashi Koichi;Suzuki Haruhiko
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we demonstrate that Common Mid-Point (CMP) cross-correlation gathers of multi-channel and multi-shot surface waves give accurate phase-velocity curves, and enable us to reconstruct two-dimensional (2D) velocity structures with high resolution. Data acquisition for CMP cross-correlation analysis is similar to acquisition for a 2D seismic reflection survey. Data processing seems similar to Common Depth-Point (CDP) analysis of 2D seismic reflection survey data, but differs in that the cross-correlation of the original waveform is calculated before making CMP gathers. Data processing in CMP cross-correlation analysis consists of the following four steps: First, cross-correlations are calculated for every pair of traces in each shot gather. Second, correlation traces having a common mid-point are gathered, and those traces that have equal spacing are stacked in the time domain. The resultant cross-correlation gathers resemble shot gathers and are referred to as CMP cross-correlation gathers. Third, a multi-channel analysis is applied to the CMP cross-correlation gathers for calculating phase velocities of surface waves. Finally, a 2D S-wave velocity profile is reconstructed through non-linear least squares inversion. Analyses of waveform data from numerical modelling and field observations indicate that the new method could greatly improve the accuracy and resolution of subsurface S-velocity structure, compared with conventional surface-wave methods.

IMPROVEMENT OF CROSS-CORRELATION TECHNIQUE FOR LEAK DETECTION OF A BURIED PIPE IN A TONAL NOISY ENVIRONMENT

  • Yoon, Doo-Byung;Park, Jin-Ho;Shin, Sung-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.977-984
    • /
    • 2012
  • The cross-correlation technique has been widely used for leakage detection of buried pipes, and this technique can be successfully applied when the leakage signal has a high signal-to-noise ratio. In the case of a power plant, the measured leakage signals obtained from the sensors may contain background noise and mechanical noise generated by adjacent machinery. In such a case, the conventional method using the cross-correlation function may fail to estimate the leakage point. In order to enhance the leakage estimation capability of a buried pipe in a noisy environment, an improved cross-correlation technique is proposed. It uses a noise rejection technique in the frequency domain to effectively eliminate the tonal noise due to rotating machinery. Experiments were carried out to verify the validity of the proposed method. The results show that even in a tonal noisy environment, the proposed method can provide more reliable means for estimating the time delay of the leakage signals.

고속 고분해 테라헤르츠 시간영역 분광기 (High-Speed High-Resolution Terahertz Time-Domain Spectrometer)

  • 김영찬;김기복;이대수;이민우;안재욱
    • 한국광학회지
    • /
    • 제19권5호
    • /
    • pp.370-375
    • /
    • 2008
  • 본 논문에서 비동시성 광샘플링(asynchronous optical sampling; AOS) 방식을 이용하는 고속 고분해 테라헤르츠 시간영역 분광(terahertz time domain spectroscopy; THz-TDS)을 시연한다. 모터로 구동되는 선형 스테이지를 사용하지 않고, 약간 다른 반복 주파수를 갖는 두 대의 펨토초 레이저를 각각 테라헤르츠파 발생과 검출에 사용하여 고속으로 10 ns의 시간축 상의 신호를 획득하고 fast Fourier transformation(FFT)을 통하여 100 MHz의 주파수 분해능을 갖는 고분해 분광을 구현한다. Cross-correlation 방법에 의해 시간 분해능은 278 fs으로 측정되었다. 또한, 본 분광기를 이용하여 수증기의 투과 스펙트럼을 측정하고 흡수선들을 분석하였다.

주파수 영역에서의 Gaussian Mixture Model 기반의 동시통화 검출 연구 (Frequency Domain Double-Talk Detector Based on Gaussian Mixture Model)

  • 이규호;장준혁
    • 한국음향학회지
    • /
    • 제28권4호
    • /
    • pp.401-407
    • /
    • 2009
  • 본 논문에서는 주파수 영역에서의 가우시안 혼합 모델 (Gaussian Mixture Model, GMM) 기반의 새로운 동시통화 검출 (Double-talk Detection, DTD) 알고리즘을 제안한다. 구체적으로 주파수 영역에서의 음향학적 반향억제 (Acoustic Echo Suppression, AES)를 위한 동시 통화 검출 알고리즘을 구성하기 위해 기존의 시간 영역에서의 동시통화 검출에 사용되는 상호 상관계수를 이산 푸리에 변환을 통해 16개 채널의 주파수 영역으로 변환하였다. 이러한 주파수 영역에서의 상호 상관계수를 GMM의 보다 효과적인 구성을 위해 통계적 분류 특성에 근거하여 우수한 7개를 선별하였다. 본 논문은 이러한 특징 벡터로 패턴인식에서 우수한 성능을 보이는 GMM을 구성하였으며 원단화자만 있는 구간, 동시통화 구간, 근단 화자만 있는 구간을 우도 (Likelihood) 비교에 따라 분류함으로써 별도의 원단 화자 신호에 대한 음성 검출기 (Voice Activity Detector, VAD)의 사용 없이 잡음환경과 반향 경로 변화에서 강인한 동시통화 검출 알고리즘을 제안한다. 다양한 실험 결과 제안된 방법은 기존의 상호 상관계수를 고정된 문턱 값과 가부 비교하여 동시 통화 구간을 검출하는 hard decision 방법에 비해 검출 오류 확률 (Detection Error Probability)을 비교한 결과 우수한 성능을 보였다.