• Title/Summary/Keyword: Time delay neural network (TDNN)

Search Result 34, Processing Time 0.025 seconds

Application of nonlinear modelling scheme based on TDNN to Performance Test Equipment (TDNN 기반 비선형 모델링 기법의 성능 측정 장치에의 적용)

  • 배금동;이영삼;김성호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.477-480
    • /
    • 2004
  • 최근 생산 현장에 최종 제품의 성능 보장을 위해 사용될 소재의 특성을 검사하는 장비가 도입.운영되고 있다. 이들 장치 중 Rheotruder는 폴리머 소재의 품질 평가기준이 되는 점도를 측정하기 위해 제작되었으며 이는 지연시간 및 비선형적 특성을 갖게 되어 시스템의 분석이 용이하지 않다는 문제점을 갖는다. 본 연구에서는 비선형 특성을 갖는 측정 장치의 성능 평가를 용이하게 하기 위해 동적 시스템 모델링이 가능한 TDNN(Time Delay Neural Network)을 도입하여 실제 Rheotruder에 적용하여 봄으로써 그 유용성을 확인하고자 한다.

  • PDF

Trajectory Control of a Robot Manipulator by TDNN Multilayer Neural Network (TDNN 다층 신경회로망을 사용한 로봇 매니퓰레이터에 대한 궤적 제어)

  • 안덕환;양태규;이상효;유언무
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.5
    • /
    • pp.634-642
    • /
    • 1993
  • In this paper a new trajectory control method is proposed for a robot manipulator using a time delay neural network(TDNN) as a feedforward controller with an algorithm to learn inverse dynamics of the manipulator. The TDNN structure has so favorable characteristics that neurons can extract more dynamic information from both present and past input signals and perform more efficient learning. The TDNN neural network receives two normalized inputs, one of which is the reference trajectory signal and the other of which is the error signals from the PD controller. It is proved that the normalized inputs to the TDNN neural network can enhance the learning efficiency of the neural network. The proposed scheme was investigated for the planar robot manipulator with two joints by computer simulation.

  • PDF

Autonomous Vehicle Tracking Using Two TDNN Neural Networks (뉴럴네트워크를 이용한 무인 전방차량 추적방법)

  • Lee, Hee-Man
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1037-1045
    • /
    • 1996
  • In this paper, the parallel model for stereo camera is employed to find the heralding angle and the distance between a leading vehicle and the following vehicle, BART(Binocular Autonomous Research Team vehicle). Two TDNNs (Time Delay Neural Network) such as S-TDNN and A-TDNN are introduced to control BART. S-TDNN controls the speed of the following vehicle while A-TDNN controls the steering angle of BATR. A human drives BART to collect data which are used for training the said neural networks. The trained networks performed the vehicle tracking function satisfactorily under the same driving conditions performed by the human driver. The neural network approach has good portability which decreases costs and saves development time for the different types of vehicles.

  • PDF

Short utterance speaker verification using PLDA model adaptation and data augmentation (PLDA 모델 적응과 데이터 증강을 이용한 짧은 발화 화자검증)

  • Yoon, Sung-Wook;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.85-94
    • /
    • 2017
  • Conventional speaker verification systems using time delay neural network, identity vector and probabilistic linear discriminant analysis (TDNN-Ivector-PLDA) are known to be very effective for verifying long-duration speech utterances. However, when test utterances are of short duration, duration mismatch between enrollment and test utterances significantly degrades the performance of TDNN-Ivector-PLDA systems. To compensate for the I-vector mismatch between long and short utterances, this paper proposes to use probabilistic linear discriminant analysis (PLDA) model adaptation with augmented data. A PLDA model is trained on vast amount of speech data, most of which have long duration. Then, the PLDA model is adapted with the I-vectors obtained from short-utterance data which are augmented by using vocal tract length perturbation (VTLP). In computer experiments using the NIST SRE 2008 database, the proposed method is shown to achieve significantly better performance than the conventional TDNN-Ivector-PLDA systems when there exists duration mismatch between enrollment and test utterances.

On-line fault diagnosis of a distillation column using time-delay neural network (Time-Delay Neural Network를 이용한 증류탑의 on-line 고장 진단)

  • 이상규;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1109-1114
    • /
    • 1992
  • Modern chemical processes are becoming more complicated. The sophisticated chemical processes have needed the fault diagnosis pxpert systems that can detect and diagnose the fault diagnosis expert systems that can detect and diagnose the faults of some processes and give and advice to the operator in the event of process faults. We present the Time-Delay Neural Network(TDNN) approach for on-line fautl diagnosis. The on-line fault diagnosis system finds the exact origin of the fault of which the symptom is propagated continuously with time. The proposed method has been applied to a pilot distillation column to show the merits and applicability of the TDNN.

  • PDF

Speech Recognition Method under Noisy Environments using Time-Delay Neural Network (시간지연신경회로망을 사용한 잡음 중의 음성인식 수법)

  • Choi, Jae Seung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.711-714
    • /
    • 2009
  • 잡음환경 하의 회화에서 잡음량을 줄이고 신호처리 시스템의 성능을 향상시키기 위해서는 잡음량에 따라서 적응적으로 처리되는 신호처리 시스템이 필요하다. 또한 잡음이 중첩된 음성으로부터 잡음을 제거하기 위해서는 잡음의 크기에 따라서 음성 처리 시스템의 파라미터를 변경하는 것이 양호한 음질의 음성을 재생하는데 바람직하다. 따라서 본 논문에서는 음성 속에 포함되는 잡음량을 인식하는 방법으로 선형예측계수를 구하여 시간지연신경회로망(Time-delay neural network: TDNN)의 입력으로 사용하여 학습시키는 잡음량을 인식하는 방법을 제안한다. 본 잡음량 인식은 다양한 배경잡음에 의하여 열화된 3종류의 음성이 TDNN에 의하여 학습되어진다. 본 실험에서는 Aurora2 데이터베이스를 사용하여 여러 잡음에 대하여 양호한 인식결과를 확인할 수 있었다.

  • PDF

A study on the new hybrid recurrent TDNN-HMM architecture for speech recognition (음성인식을 위한 새로운 혼성 recurrent TDNN-HMM 구조에 관한 연구)

  • Jang, Chun-Seo
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.699-704
    • /
    • 2001
  • ABSTRACT In this paper, a new hybrid modular recurrent TDNN (time-delay neural network)-HMM (hidden Markov model) architecture for speech recognition has been studied. In TDNN, the recognition rate could be increased if the signal window is extended. To obtain this effect in the neural network, a high-level memory generated through a feedback within the first hidden layer of the neural network unit has been used. To increase the ability to deal with the temporal structure of phonemic features, the input layer of the network has been divided into multiple states in time sequence and has feature detector for each states. To expand the network from small recognition task to the full speech recognition system, modular construction method has been also used. Furthermore, the neural network and HMM are integrated by feeding output vectors from the neural network to HMM, and a new parameter smoothing method which can be applied to this hybrid system has been suggested.

  • PDF

Application of Neural Network Scheme to Performance Enhancement of Rheotruder

  • Kim, Sung-Ho;Lee, Young-Sam;Diaconescu, Bogdana
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.114-118
    • /
    • 2005
  • Recently, in order to guarantee the quality of the final product from the production line, several equipments able to examine the polymer ingredients' quality are being used. Rheotruder is one of the equipments manufactured to measure the viscosity of the ingredient that is an important factor for the quality of final product. However, Rheotruder has nonlinear characteristics such as time delay which make systematic analysis difficult. In this paper, in order to enhance the performance of Rheotruder, a new scheme is introduced. It incorporates TDNN (Time Delay Neural Network) bank and Elman network to get a right decision on whether the tested ingredient is good or not. Furthermore, the proposed scheme is verified through real test execution.

Noise Suppression of Speech Signal using TDNN for each Frequency Band (주파수대역별 TDNN을 이용한 음성신호의 잡음억제)

  • Choi, Jae Seung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.341-344
    • /
    • 2009
  • 본 논문에서는 신경회로망(Neural network)에 시간구조를 도입한 시간지연 신경회로망(Time-delay Neural Network: TDNN)을 사용하여 잡음을 포함한 음성신호로부터 잡음을 제거함으로써 음성을 강조하는 것을 목적으로 한다. 본 논문에서는 먼저 각 프레임의 FFT 진폭성분들을 유성음 구간과 무성음 구간으로 검출한 후, 무성음 구간에 대해서는 각 프레임에서 이동평균을 취하여 음성을 강조한다. 유성음 구간에 대해서는 각 프레임의 FFT 진폭성분들을 저역, 중역 및 고역으로 각각 분리한 후에 각 대역의 FFT 진폭성분들을 저역용 TDNN, 중역용 TDNN, 그리고 고역용 TDNN의 입력으로 하여 각 TDNN에 학습시킴으로써 최종 FFT 진폭성분들을 구한다. 본 실험에서는 Aurora2 데이터베이스를 사용하여 FFT의 진폭성분을 복원하는 잡음제거의 알고리즘을 사용하여 여러 잡음에 대해서 본 알고리즘의 유효성을 실험적으로 확인한다.

  • PDF

Financial Data Mining Using Time delay Neural Networks

  • Kim, Hyun-Jung;Shin, Kyung-Shik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.122-127
    • /
    • 2001
  • This study investigates the effectiveness of time delay neural networks(TDNN) for the time dependent prediction domain. Although it is well-known fact that the back-propagation neural network(BPN) performs well in pattern recognition tasks, the method has some limitations in that it can only learn an input mapping of static (or spatial) patterns that are independent of time of sequences. The preliminary results show that the accuracy of TDNN is higher than the standard BPN with time lag. Our proposed approaches are demonstrated by the stork market prediction domain.

  • PDF