• Title/Summary/Keyword: Time complexity

Search Result 3,063, Processing Time 0.03 seconds

Developing Stock Pattern Searching System using Sequence Alignment Algorithm (서열 정렬 알고리즘을 이용한 주가 패턴 탐색 시스템 개발)

  • Kim, Hyong-Jun;Cho, Hwan-Gue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.6
    • /
    • pp.354-367
    • /
    • 2010
  • There are many methods for analyzing patterns in time series data. Although stock data represents a time series, there are few studies on stock pattern analysis and prediction. Since people believe that stock price changes randomly we cannot predict stock prices using a scientific method. In this paper, we measured the degree of the randomness of stock prices using Kolmogorov complexity, and we showed that there is a strong correlation between the degree and the accuracy of stock price prediction using our semi-global alignment method. We transformed the stock price data to quantized string sequences. Then we measured randomness of stock prices using Kolmogorov complexity of the string sequences. We use KOSPI 690 stock data during 28 years for our experiments and to evaluate our methodology. When a high Kolmogorov complexity, the stock price cannot be predicted, when a low complexity, the stock price can be predicted, but the prediction ratio of stock price changes of interest to investors, is 12% prediction ratio for short-term predictions and a 54% prediction ratio for long-term predictions.

A Low-Complexity 2-D MMSE Channel Estimation for OFDM Systems (OFDM 시스템을 위한 낮은 복잡도를 갖는 2-D MMSE 채널 추정 기법)

  • Kim, Jung-In;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.317-325
    • /
    • 2011
  • For OFDM (Orthogonal Frequency Division Multiplexing) systems, 2-D MMSE (2-Dimensional Minimum Mean Square Error) channel estimation provides optimal performance in frequency/time selective fading channel environment. However, the 2-D MMSE channel estimation has high computational complexity due to the large matrix size, because the 2-D MMSE channel estimation considers time as well as frequency axis for channel estimation. To reduce the computational complexity, we propose a modified 2-D MMSE channel estimator which is based on 1-D MMSE channel estimation with weighted sum. Furthermore, we consider RMS delay spread and Doppler frequency estimation for 2-D MMSE channel estimation. We show that the proposed method can significantly reduce computational complexity as well as that it can perform close to 2-D MMSE channel estimation.

Design of Serial-Parallel Multiplier for GF($2^n$) (GF($2^n$)에서의 직렬-병렬 곱셈기 구조)

  • 정석원;윤중철;이선옥
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.3
    • /
    • pp.27-34
    • /
    • 2003
  • Recently, an efficient hardware development for a cryptosystem is concerned. The efficiency of a multiplier for GF($2^n$)is directly related to the efficiency of some cryptosystem. This paper, considering the trade-off between time complexity andsize complexity, proposes a new multiplier architecture having n[n/2] AND gates and n([n/2]+1)- $$\Delta$_n$ = XOR gates, where $$\Delta$_n$=1 if n is even, $$\Delta$_n$=0 otherwise. This size complexity is less than that of existing ${multipliers}^{[5][12]}$which are $n^2$ AND gates and $n^2$-1 XOR gates. While a new multiplier is a serial-parallel multiplier to output a result of multiplication of two elements of GF($2^n$) after 2 clock cycles, the suggested multiplier is more suitable for some cryptographic device having space limitations.

Near-Optimal Low-Complexity Hybrid Precoding for THz Massive MIMO Systems

  • Yuke Sun;Aihua Zhang;Hao Yang;Di Tian;Haowen Xia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1042-1058
    • /
    • 2024
  • Terahertz (THz) communication is becoming a key technology for future 6G wireless networks because of its ultra-wide band. However, the implementation of THz communication systems confronts formidable challenges, notably beam splitting effects and high computational complexity associated with them. Our primary objective is to design a hybrid precoder that minimizes the Euclidean distance from the fully digital precoder. The analog precoding part adopts the delay-phase alternating minimization (DP-AltMin) algorithm, which divides the analog precoder into phase shifters and time delayers. This effectively addresses the beam splitting effects within THz communication by incorporating time delays. The traditional digital precoding solution, however, needs matrix inversion in THz massive multiple-input multiple-output (MIMO) communication systems, resulting in significant computational complexity and complicating the design of the analog precoder. To address this issue, we exploit the characteristics of THz massive MIMO communication systems and construct the digital precoder as a product of scale factors and semi-unitary matrices. We utilize Schatten norm and Hölder's inequality to create semi-unitary matrices after initializing the scale factors depending on the power allocation. Finally, the analog precoder and digital precoder are alternately optimized to obtain the ultimate hybrid precoding scheme. Extensive numerical simulations have demonstrated that our proposed algorithm outperforms existing methods in mitigating the beam splitting issue, improving system performance, and exhibiting lower complexity. Furthermore, our approach exhibits a more favorable alignment with practical application requirements, underlying its practicality and efficiency.

Measurement of Classes Complexity in the Object-Oriented Analysis Phase (객체지향 분석 단계에서의 클래스 복잡도 측정)

  • Kim, Yu-Kyung;Park, Jai-Nyun
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.10
    • /
    • pp.720-731
    • /
    • 2001
  • Complexity metrics have been developed for the structured paradigm of software development are not suitable for use with the object-oriented(OO) paradigm, because they do not support key object-oriented concepts such as inheritance, polymorphism. message passing and encapsulation. There are many researches on OO software metrics such as program complexity or design metrics. But metrics measuring the complexity of classes at the OO analysis phase are needed because they provide earlier feedback to the development project. and earlier feedback means more effective developing and less costly maintenance. In this paper, we propose the new metrics to measure the complexity of analysis classes which draw out in the analysis based on RUP(Rational Unified Process). By the collaboration complexity, is denoted by CC, we mean the maximum number of the collaborations can be achieved with each of the collaborator and determine the potential complexity. And the interface complexity, is denoted by IC, shows the difficulty related to understand the interface of collaborators each other. We verify theoretically the suggested metrics for Weyuker's nine properties. Moreover, we show the computation results for analysis classes of the system which automatically respond to questions of the user using the text mining technique. As a result of the comparison of CC and CBO and WMC suggested by Chidamber and Kemerer, the class that have highly the proposed metric value maintain the high complexity at the design phase too. And the complexity can be represented by CC and IC more than CBO and WMC. We can expect that our metrics may provide us the earlier feedback and hence possible to predict the efforts, costs and time required to remainder processes. As a result, we expect to develop the cost-effective OO software by reviewing the complexity of analysis classes in the first stage of SDLC(Software Development Life Cycle).

  • PDF

Design and Performance of Low Complexity Multiple Antenna Relay Transmission Based on STBC-OFDM (시공간 부호화 직교 주파수분할 다중화 기반 저 복잡도 다중 안테나 릴레이 전송 방식 설계 및 성능)

  • Lee, Ji-Hye;Park, Jae-Cheol;Wang, Jin-Soo;Lee, Seong-Ro;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.673-681
    • /
    • 2011
  • In this paper, we design multiple antenna relay transmission schemes of low complexity to enhance the spatial diversity in orthogonal frequency division multiplexing (OFDM) systems. The relay scheme underlined, can provide space time block coding (STBC) of OFDM signals in the time domain without IFFT and FFT operations with much reduced complexity. In this paper, we modify the conventional low-complexity STBC-OFDM relaying scheme to be compatible to the existing OFDM systems. In addition, we extend the proposed scheme for multiple antenna relays and provide performance enhancement strategies according to the channel quality information available at the relay. The proposed scheme is shown to improve the diversity and thereby to reduce the outage probability and coded bit error rate. Therefore, the proposed scheme will be promising for service quality improvement or coverage extension based on OFDM like wireless LANs and maritime communications.

Real-time implementation of the 2.4kbps EHSX Speech Coder Using a $TMS320C6701^TM$ DSPCore ($TMS320C6701^TM$을 이용한 2.4kbps EHSX 음성 부호화기의 실시간 구현)

  • 양용호;이인성;권오주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.962-970
    • /
    • 2004
  • This paper presents an efficient implementation of the 2.4 kbps EHSX(Enhanced Harmonic Stochastic Excitation) speech coder on a TMS320C6701$^{TM}$ floating-point digital signal processor. The EHSX speech codec is based on a harmonic and CELP(Code Excited Linear Prediction) modeling of the excitation signal respectively according to the frame characteristic such as a voiced speech and an unvoiced speech. In this paper, we represent the optimization methods to reduce the complexity for real-time implementation. The complexity in the filtering of a CELP algorithm that is the main part for the EHSX algorithm complexity can be reduced by converting program using floating-point variable to program using fixed-point variable. We also present the efficient optimization methods including the code allocation considering a DSP architecture and the low complexity algorithm of harmonic/pitch search in encoder part. Finally, we obtained the subjective quality of MOS 3.28 from speech quality test using the PESQ(perceptual evaluation of speech quality), ITU-T Recommendation P.862 and could get a goal of realtime operation of the EHSX codec.c.

An Adaptive Decision-Directed Equalizer using Iterative Hyperplane Projection for SIMO systems (IHP 알고리즘을 이용한 SIMO 시스템용 적응 직접 결정 등화기 연구)

  • Lee Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.82-91
    • /
    • 2005
  • This paper introduces an efficient affine projection algorithm(APA) using iterative hyperplane projection. Among various fast converging adaptation algorithms, APA has been preferred to be employed for various applications due to its inherent effectiveness against the rank deficient problem. However, the amount of complexity of the conventional APA could not be negligible because of the accomplishment of sample matrix inversion(SMI). Moreover, the 'shifting invariance property' usually exploited in single channel case does not hold for the application of space-time decision-directed equalizer(STDE) deployed in single-input-multi-output(SIMO) systems. Thus, it is impossible to utilize the fast adaptation schemes such as fast transversal filter(FlF) having low-complexity. To accomplish such tasks, this paper introduces the low-complexity APA by employing hyperplane projection algorithm, which shows the excellent tracking capability as well as the fast convergence. In order to confirm th validity of the proposed method, its performance is evaluated under wireless SIMO channel in respect to bit error rate(BER) behavior and computational complexity.

Low Complexity Digit-Parallel/Bit-Serial Polynomial Basis Multiplier (저복잡도 디지트병렬/비트직렬 다항식기저 곱셈기)

  • Cho, Yong-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.337-342
    • /
    • 2010
  • In this paper, a new architecture for digit-parallel/bit-serial GF($2^m$) multiplier with low complexity is proposed. The proposed multiplier operates in polynomial basis of GF($2^m$) and produces multiplication results at a rate of one per D clock cycles, where D is the selected digit size. The digit-parallel/bit-serial multiplier is faster than bit-serial ones but with lower area complexity than bit-parallel ones. The most significant feature of the digit-parallel/bit-serial architecture is that a trade-off between hardware complexity and delay time can be achieved. But the traditional digit-parallel/bit-serial multiplier needs extra hardware for high speed. In this paper a new low complexity efficient digit-parallel/bit-serial multiplier is presented.

Fast Macroblock Mode Selection Algorithm for B Frames in Multiview Video Coding

  • Yu, Mei;He, Ping;Peng, Zongju;Zhang, Yun;Si, Yuehou;Jiang, Gangyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.408-427
    • /
    • 2011
  • Intensive computational complexity is an obstacle of enabling multiview video coding for real-time applications. In this paper, we present a fast macroblock (MB) mode selection algorithm for B frames which are based on the computational complexity analyses between the MB mode selection and reference frame selection. Three strategies are proposed to reduce the coding complexity jointly. First, the temporal correlation of MB modes between current MB and its temporal corresponding MBs is utilized to reduce computational complexity in determining the optimal MB mode. Secondly, Lagrangian cost of SKIP mode is compared with that of Inter $16{\times}16$ modes to early terminate the mode selection process. Thirdly, reference frame correlation among different Inter modes is exploited to reduce the number of reference frames. Experimental results show that the proposed algorithm can promote the encoding speed by 3.71~7.22 times with 0.08dB PSNR degradation and 2.03% bitrate increase on average compared with the joint multiview video model.