• Title/Summary/Keyword: Time calculation

Search Result 3,664, Processing Time 0.026 seconds

Control of Magnetic Bearing using ATmega128(Focused on experiments) (ATmega128 소자를 이용한 자기베어링 제어(실험을 중심으로))

  • Yang, Joo-Ho;Choi, Gyo-Ho;Choung, Kwang-Gyo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.139-146
    • /
    • 2013
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration, it is very useful to high revolution machinery. In this paper we selected ATmega 128, a less expensive and widely used micro controller, for control the magnetic bearing system. And we selected the sampling time and the control gain of PID controller through trial-and-error. The control program of the one board controller utilized lookup table to reduce calculation time, and bit shifting for the integer calculation in instead of floating point calculation. As the results, the controller carried out relatively high speed PID control on sampling time 0.25 ms. At last the rotation test for the magnetic bearing system was carried out by 3 phase induction motor and air turbine.

Performance Improvement of High Speed Operation for Sensorless based Synchronous Machine (회전자 위치센서 없는 동기전동기의 고속 운전 성능 개선)

  • Jung, Young-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.439-444
    • /
    • 2018
  • The performance improvement in the high speed region for the sensorless based synchronous machine drive is discussed in the paper. Conventional dynamic overmodulation method in the vector controlled AC driver requires some calculation of maximum amplitude of the applying voltage vector to limit its amplitude, which leads to increase the calculation time of microprocessor. For low performance microprocessor, this might be impossible to complete the control loop within limited control time. Thus, to reduce the calculation time, the constantly limited amplitude for applying voltage vector is tried in this paper to drive sensorless based synchronous motor. Certainly, there exists some errors in amplitude and phase angle between inverter voltage and calculating voltage in the sensorless algorithm. But, this errors are too small to prevent the high speed sensorless operation within overmodulation region. The validities of the proposed method is proved by the experimental results.

Analysis of an HTS coil for large scale superconducting magnetic energy storage

  • Lee, Ji-Young;Lee, Seyeon;Choi, Kyeongdal;Park, Sang Ho;Hong, Gye-Won;Kim, Sung Soo;Lee, Ji-Kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

A Study on the load Flow Calculation for preserving off Diagonal Element in Jacobian Matrix (Jacobian 행렬의 비 대각 요소를 보존시킬 수 있는 조류계산에 관한 연구)

  • 이종기;최병곤;박정도;류헌수;문영현
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1081-1087
    • /
    • 1999
  • Load Flow calulation methods can usually be divided into Gauss-Seidel method, Newton-Raphson method and decoupled method. Load flow calculation is a basic on-line or off-line process for power system planning. operation, control and state analysis. These days Newton-Raphson method is mainly used since it shows remarkable convergence characteristics. It, however, needs considerable calculation time in construction and calculation of inverse Jacobian matrix. In addition to that, Newton-Raphson method tends to fail to converge when system loading is heavy and system has a large R/X ratio. In this paper, matrix equation is used to make algebraic expression and then to slove load flow equation and to modify above defects. And it preserve P-Q bus part of Jacobian matrix to shorten computing time. Application of mentioned algorithm to 14 bus, 39 bus, 118 bus systems led to identical results and the same numbers of iteration obtained by Newton-Raphson method. The effect of computing time reduction showed about 28% , 30% , at each case of 39 bus, 118 bus system.

  • PDF

Merging Radar Rainfalls of Single and Dual-polarization Radar to Improve the Accuracy of Quantitative Precipitation Estimation (정량적 강우강도 정확도 향상을 위한 단일편파와 이중편파레이더 강수량 합성)

  • Lee, Jae-Kyoung;Kim, Ji-Hyeon;Park, Hye-Sook;Suk, Mi-Kyung
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.365-378
    • /
    • 2014
  • The limits of S-band dual-polarization radars in Korea are not reflected on the recent weather forecasts of Korea Meteorological Administration and furthermore, they are only utilized for rainfall estimations and hydrometeor classification researches. Therefore, this study applied four merging methods [SA (Simple Average), WA (Weighted Average), SSE (Sum of Squared Error), TV (Time-varying mergence)] to the QPE (Quantitative Precipitation Estimation) model [called RAR (Radar-AWS Rainfall) calculation system] using single-polarization radars and S-band dual-polarization radar in order to improve the accuracy of the rainfall estimation of the RAR calculation system. As a result, the merging results of the WA and SSE methods, which are assigned different weights due to the accuracy of the individual model, performed better than the popular merging method, the SA (Simple Average) method. In particular, the results of TVWA (Time-Varying WA) and TVSSE (Time-Varying SSE), which were weighted differently due to the time-varying model error and standard deviation, were superior to the WA and SSE. Among of all the merging methods, the accuracy of the TVWA merging results showed the best performance. Therefore, merging the rainfalls from the RAR calculation system and S-band dual-polarization radar using the merging method proposed by this study enables to improve the accuracy of the quantitative rainfall estimation of the RAR calculation system. Moreover, this study is worthy of the fundamental research on the active utilization of dual-polarization radar for weather forecasts.

MPW Chip Implementation and Verification of High-performance Vector Inner Product Calculation Circuit for SVM-based Object Recognition (SVM 기반 사물 인식을 위한 고성능 벡터 내적 연산 회로의 MPW 칩 구현 및 검증)

  • Shin, Jaeho;Kim, Soojin;Cho, Kyeongsoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.124-129
    • /
    • 2013
  • This paper proposes a high-performance vector inner product calculation circuit for real-time object recognition based on SVM algorithm. SVM algorithm shows a higher detection rate than other object recognition algorithms. However, it requires a huge amount of computational efforts. Since vector inner product calculation is one of the major operations of SVM algorithm, it is important to implement a high-performance vector inner product calculation circuit for real-time object recognition capability. The proposed circuit adopts the pipeline architecture with six stages to increase the operating speed and makes it possible to recognize objects in real time based on SVM. The proposed circuit was described in Verilog HDL at RTL. For silicon verification, an MPW chip was fabricated using TSMC 180nm standard cell library. The operation of the implemented MPW chip was verified on the test board with test application software developed for the chip verification.

Kinetics calculation of fast periodic pulsed reactors using MCNP6

  • Zhon, Z.;Gohar, Y.;Talamo, A.;Cao, Y.;Bolshinsky, I.;Pepelyshev, Yu N.;Vinogradov, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1051-1059
    • /
    • 2018
  • Fast periodic pulsed reactor is a type of reactor in which the fission bursts are formed entirely with external reactivity modulation with a specified time periodicity. This type of reactors could generate much larger intensity of neutron beams for experimental use, compared with the steady state reactors. In the design of fast periodic pulsed reactors, the time dependent simulation of the power pulse is majorly based on a point kinetic model, which is known to have limitations. A more accurate calculation method is desired for the design analyses of fast periodic pulsed reactors. Monte Carlo computer code MCNP6 is used for this task due to its three dimensional transport capability with a continuous energy library. Some new routines were added to simulate the rotation of the movable reflector parts in the time dependent calculation. Fast periodic pulsed reactor IBR-2M was utilized to validate the new routines. This reactor is periodically in prompt supercritical state, which lasts for ${\sim}400{\mu}s$, during the equilibrium state. This generates long neutron fission chains, which requires tremendously large amount of computation time during Monte Carlo simulations. Russian Roulette was applied for these very long neutron chains in MCNP6 calculation, combined with other approaches to improve the efficiency of the simulations. In the power pulse of the IBR-2M at equilibrium state, there is some discrepancy between the experimental measurements and the calculated results using the point kinetics model. MCNP6 results matches better the experimental measurements, which shows the merit of using MCNP6 calculation relative to the point kinetics model.

A Study on the Automated Algorithm for Legal Calculation of Weighted Average of Building Surface - Based on Rhino Grasshopper Using Digital Topographic Map Data - (건축물 지표면 가중평균 법정산정 자동화 알고리즘에 관한 연구 - 수치지형도 데이터를 이용한 Rhino Grasshopper 중심으로 -)

  • Choi, Se-Yeong;Song, Seok-Jae;Kim, Yong-Seong
    • Journal of KIBIM
    • /
    • v.13 no.2
    • /
    • pp.1-15
    • /
    • 2023
  • Since the 1960s, the Korean Peninsula, which consists of 77.4 of the country's land and mountains, has seen a surge in demand for buildings due to population concentration due to urbanization and industrialization. Since then, the development of slopes has been inevitable due to the concentration and expansion of the city's population. When building a building on a slope, it is important to set the height of the surface. In this case, the means of regulating buildings in construction-related laws, such as the building closure ratio, floor area ratio, number of floors and total floor area of buildings, have an overall effect on buildings through the height of the surface. In the Korean Building Act, the setting of the height of the ground affects the calculation of the building height limit standard and the calculation of the underground floor, and it takes a long time to calculate. Therefore, the time required for attempts to change various design plans of buildings increases. The purpose of this study is to speed up the time required to calculate the weighted average of the surface when constructing buildings on slopes. In addition, the existing calculation process allows various design attempts compared to the same time given.

A Network-adaptive Context Extraction Method for JPEG2000 Using Tree-Structure of Coefficients from DWT (DWT 계수의 트리구조를 이용한 네트워크-적응적 JPEG2000 컨텍스트 추출방법)

  • Choi Hyun-Jun;Seo Young-Ho;Kim Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.939-948
    • /
    • 2005
  • In EBCOT, the context extraction process takes excessive calculation time and this paper proposed a method to reduce this calculation time. That is, if a coefficient is less than a pre-defined threshold value the coefficient and its descendents skip the context extraction process. There is a trade-off relationship between the calculation time and the image quality or the amount of output data such that as this threshold value increases, the calculation time and the amount of output data decreases, but the image degradation increases. Therefore, by deciding this threshold value according to the network environments or conditions, it is possible to establish a network-adaptive context extraction method. The experimental results showed that the range of the threshold values for acceptable image quality(better than 30dB) is from 0 to 4. The experimental results showed that in this range the Resulting reduction rate in calculation time was from $3\%\;to\;64\%$ in average, the reduction rate in output data was from $32\%$ to $73\%$ in average, which means that large reduction in calculation time and output data can be obtained with a cost of an acceptable image quality degradation. Therefore, the proposed method is expected to be used efficiently in the application area such as the real-time image/video data communication in wireless environments, etc.

Application of Variance Reduction Techniques for the Improvement of Monte Carlo Dose Calculation Efficiency (분산 감소 기법에 의한 몬테칼로 선량 계산 효율 평가)

  • Park, Chang-Hyun;Park, Sung-Yong;Park, Dal
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.240-248
    • /
    • 2003
  • The Monte Carlo calculation is the most accurate means of predicting radiation dose, but its accuracy is accompanied by an increase in the amount of time required to produce a statistically meaningful dose distribution. In this study, the effects on calculation time by introducing variance reduction techniques and increasing computing power, respectively, in the Monte Carlo dose calculation for a 6 MV photon beam from the Varian 600 C/D were estimated when maintaining accuracy of the Monte Carlo calculation results. The EGSnrc­based BEAMnrc code was used to simulate the beam and the EGSnrc­based DOSXYZnrc code to calculate dose distributions. Variance reduction techniques in the codes were used to describe reduced­physics, and a computer cluster consisting of ten PCs was built to execute parallel computing. As a result, time was more reduced by the use of variance reduction techniques than that by the increase of computing power. Because the use of the Monte Carlo dose calculation in clinical practice is yet limited by reducing the computational time only through improvements in computing power, introduction of reduced­physics into the Monte Carlo calculation is inevitable at this point. Therefore, a more active investigation of existing or new reduced­physics approaches is required.

  • PDF