• Title/Summary/Keyword: Time calculation

Search Result 3,655, Processing Time 0.035 seconds

Development of the computer program calculating the stress induced by various loads for buried natural gas pipeline ( I ) (매설 천연가스 배관의 제반하중에 의한 응력 계산용 프로그램 개발 (I))

  • Bang I.W.;Kim H.S.;Kim W.S.;Yang Y.C.;Oh K.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.18-25
    • /
    • 1998
  • According to the requirements of ANSI B3l.8, the pipe thickness is determined with hoop stress resulted from internal pressure. And the other loads induced by soil, vehicle, thermal expansion, ground subsidence, etc shall be evaluated rationally. There are two ways of calculating stress of buried gas pipeline. The first is FEM. FEM can calculate the stress regardless of the complexity of pipeline shape and boundary conditions. But it needs high cost and long time. The second is the way to use equation. The reliable equations to calculate the stress of buried gas pipeline was developed and have been used in designing pipeline and evaluating pipeline safety, But these equation are very difficult to understand and use for non-specialist. For easy calculation of non-specialist, the new computer program to calculate stress of buried natural gas pipeline have been developed. The stress is calculated by the equations and extrapolation of the graph resulted from FEM. The full paper is consist of series I and II. In this paper, series I, the calculating equation of the program is explained in detail.

  • PDF

A Case Study on Levels of Arithmetical Thinking of an Underachiever in Number and Operation - Focusing on a 6th Grader - (수와 연산 영역 부진 학생의 산술적 사고 수준에 관한 사례 연구 - 초등학교 6학년 한 학생을 대상으로 -)

  • Lim, Miin;Chang, Hyewon
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.3
    • /
    • pp.489-508
    • /
    • 2016
  • Number and operation is the most basic and crucial part in elementary mathematics but is also well known as a part that students have lots of difficulties. A lot of researches have been done in various ways to solve this problem but it can't be solved fundamentally by emphasizing calculation method and skill. So we need to go over it in terms of relevant arithmetical thinking. This study aims to diagnose the cause of an underachiever's difficulties about arithmetic and finds a prescription for her by analyzing her level of arithmetical thinking based on Guberman(2014) and understanding about arithmetic. To achieve this goal, we chose an 6th grader who's having a hard time particularly in number and operation among mathematics strands and conducted a case study carrying out arithmetical thinking level tests on two separate occasions and analyzing her responses. As a result of analyzing data, her arithmetical thinking corresponded to Guberman's first level and it is also turned out that student is suffering from some arithmetic concepts. We suggest several implications for teaching of arithmetic at elementary school in terms of the development of arithmetical thinking based on analysis result and discussion about it.

The Effects of Negative Pressure and Drain Spacing in the Horizontal Method for an Early Settlement of Dredged and Filled Grounds (해안준설매립토의 조기안정을 위한 수평배수공법에서 부압과 배수재 배치간격의 영향)

  • 김수삼;한상재;김병일;김정기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • In this paper, the laboratory test results with middle-sired ,soil box test in modeling the in-situ installing of horizontal drains are discussed the estimation of the optimum negative pressure. The test was carried out in the different vacuum pressure conditions together with the measurement for the settlement and volume change of drained water by the installed drains during the consolidation process. After the test, the water content was measured to both directions of lateral distance from the drain and depth of the soil, to find out the distribution of ground improvement and strength enhancement. From the analysis on the distribution of water content, the gradual application of vacuum pressure to higher level by pre-determined stages starting from low vacuum pressure is found to be effective and desirable. In the comparison of the degrees of consolidation with elapsed time, the calculated value by the prediction method based on the Barren's conventional theory showed a good agreement with the measured value. With this, It is positively considered that the applicability of the prediction method based on Barren's theory to the practical design of horizontal drains can be justified such as in the calculation of drain spacing and consolidation period.

Climate Change Impact on the Flowering Season of Japanese Cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100 (기후변화에 따른 벚꽃 개화일의 시공간 변이)

  • Yun Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.68-76
    • /
    • 2006
  • A thermal time-based two-step phenological model was used to project flowering dates of Japanese cherry in South Korea from 1941 to 2100. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. Daily maximum and minimum temperature are used to calculate daily chill units until a pre-determined chilling requirement for rest release is met. After the projected rest release date, daily heat units (growing degree days) are accumulated until a pre-determined heating requirement for flowering is achieved. Model calculations using daily temperature data at 18 synoptic stations during 1955-2004 were compared with the observed blooming dates and resulted in 3.9 days mean absolute error, 5.1 days root mean squared error, and a correlation coefficient of 0.86. Considering that the phonology observation has never been fully standardized in Korea, this result seems reasonable. Gridded data sets of daily maximum and minimum temperature with a 270 m grid spacing were prepared for the climatological years 1941-1970 and 1971-2000 from observations at 56 synoptic stations by using a spatial interpolation scheme for correcting urban heat island effect as well as elevation effect. A 25km-resolution temperature data set covering the Korean Peninsula, prepared by the Meteorological Research Institute of Korea Meteorological Administration under the condition of Inter-governmental Panel on Climate Change-Special Report on Emission Scenarios A2, was converted to 270 m gridded data for the climatological years 2011-2040, 2041-2070 and 2071-2100. The model was run by the gridded daily maximum and minimum temperature data sets, each representing a climatological normal year for 1941-1970, 1971-2000, 2011-2040, 2041-2070, and 2071-2100. According to the model calculation, the spatially averaged flowering date for the 1971-2000 normal is shorter than that for 1941-1970 by 5.2 days. Compared with the current normal (1971-2000), flowering of Japanese cherry is expected to be earlier by 9, 21, and 29 days in the future normal years 2011-2040, 2041-2070, and 2071-2100, respectively. Southern coastal areas might experience springs with incomplete or even no Japanese cherry flowering caused by insufficient chilling for breaking bud dormancy.

Face recognition using PCA and face direction information (PCA와 얼굴방향 정보를 이용한 얼굴인식)

  • Kim, Seung-Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.609-616
    • /
    • 2017
  • In this paper, we propose an algorithm to obtain more stable and high recognition rate by using left and right rotation information of input image in order to obtain a stable recognition rate in face recognition. The proposed algorithm uses the facial image as the input information in the web camera environment to reduce the size of the image and normalize the information about the brightness and color to obtain the improved recognition rate. We apply Principal Component Analysis (PCA) to the detected candidate regions to obtain feature vectors and classify faces. Also, In order to reduce the error rate range of the recognition rate, a set of data with the left and right $45^{\circ}$ rotation information is constructed considering the directionality of the input face image, and each feature vector is obtained with PCA. In order to obtain a stable recognition rate with the obtained feature vector, it is after scattered in the eigenspace and the final face is recognized by comparing euclidean distant distances to each feature. The PCA-based feature vector is low-dimensional data, but there is no problem in expressing the face, and the recognition speed can be fast because of the small amount of calculation. The method proposed in this paper can improve the safety and accuracy of recognition and recognition rate faster than other algorithms, and can be used for real-time recognition system.

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF

Effects of fallen blossoms of Prunus spp. on nutrient dynamics in an artificial pond ecosystem (벚나무류 낙화가 인공 연못생태계의 물질순환에 미치는 영향)

  • Lee, Bo Eun;Jeon, Young Joon;Jang, You Lim;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.203-208
    • /
    • 2015
  • To identify the effect of fallen cherry blossom on the artificial pond ecosystem, microcosm experiment was conducted into the aquatic decomposition of Prunus species petals. Petals were put in $1mm^2$ mesh nylon litter bags. For treatment group, one flower litter bag was placed into each pot microcosm ($27{\times}20{\times}8cm^3$) filled with influent water from the artificial pond, whereas control group microcosm contained pond water only. Decomposition time were set differently (4, 8, 12, 16 days) among treatment groups. At the end of experiment, most petals were decomposed and only 32.3% of initial dry weight remained with the decay rate (k) of $7.06{\times}10^{-2}day^{-1}$. $NO_3-N$ concentration of microcosm water decreased sharply from 1.90 mg/L at first to 0.02 mg/L, whereas $NH_4-N$ concentration increased from 0.03 mg/L to 2.85 mg/L continually. $PO_4-P$ concentration was 0.03 mg/L at first and increased to 2.39 mg/L by decomposition. Therefore, available phosphorus seems to have leached with higher rate than nitrogen from the petals litter. Increase about 0.02 mg/L in $PO_4-P$ concentration could be estimated in artificial pond from the calculation on the total quantity of fallen blossoms. This result suggests that available phosphorus from the decomposed Prunus petals could cause eutrophication in the artificial pond.

Evaluation of Basin-Specific Water Use through Development of Water Use Assessment Index (이수평가지수 개발을 통한 유역별 물이용 특성 평가)

  • Baeck, Seung Hyub;Choi, Si Jung
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.367-380
    • /
    • 2013
  • In this study, sub-indicators, and thematic mid-indexes to evaluate the water use characteristics were selected through historical data analysis and factor analysis, and consisted of the subject approach framework. And the integrated index was developed to evaluate water use characteristics of the watershed. Using developed index, the water use characteristics were assessed for 812 standard basins with the exception for North Korea using data of 1990 to 2007 from the relevant agencies. A sensitivity analysis is conducted for this study to determine the proper way through various normalization and weighting methods. To increase the objectivity of developed index, the history of the damage indicators are excluded in the analysis. In addition, in order to ensure its reliability, results from index with and without consideration of the damage history were compared. Also, the index is also applied to real data for 2008 Gangwon region to verify its field applicability. Through the validation process this index confirmed the adequacy for the indicators selection and calculation method. The results of this study were analyzed based on the spatial and time vulnerability of the basin's water use, which can be applied to various parts such as priority decision-making for water business or policy, mitigations for the vulnerable components of the basin, and supporting measures to establishment by providing relevant information about it.

Improvement of Altitude Measurement Algorithm Based on Accelerometer for Holding Drone's Altitude (드론의 고도 유지를 위한 가속도센서 기반 고도 측정 알고리즘 개선)

  • Kim, Deok Yeop;Yun, Bo Ram;Lee, Sunghee;Lee, Woo Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.10
    • /
    • pp.473-478
    • /
    • 2017
  • Drones require altitude holding in order to achieve flight objectives. The altitude holding of the drone is to repeat the operation of raising or lowering the drone according to the altitude information being measured in real-time. When the drones are maintained altitude, the drone's altitude will continue to change due to external factors such as imbalance in thrust due to difference in motor speed or wind. Therefore, in order to maintain the altitude of drone, we have to exactly measure the continuously changing altitude of the drone. Generally, the acceleration sensor is used for measuring the height of the drones. In this method, there is a problem that the measured value due to the integration error accumulates, and the drone's vibration is recognized by the altitude change. To solve the difficulty of the altitude measurement, commercial drones and existing studies are used for altitude measurement together with acceleration sensors by adding other sensors. However, most of the additional sensors have a limitation on the measurement distance and when the sensors are used together, the calculation processing of the sensor values increases and the altitude measurement speed is delayed. Therefore, it is necessary to accurately measure the altitude of the drone without considering additional sensors or devices. In this paper, we propose a measurement algorithm that improves general altitude measurement method using acceleration sensor and show that accuracy of altitude holding and altitude measurement is improved as a result of applying this algorithm.

An intercomparison study between optimization algorithms for parameter estimation of microphysics in Unified model : Micro-genetic algorithm and Harmony search algorithm (통합모델의 강수물리과정 모수 최적화를 위한 알고리즘 비교 연구 : 마이크로 유전알고리즘과 하모니 탐색 알고리즘)

  • Jang, Jiyeon;Lee, Yong Hee;Joo, Sangwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • The microphysical processes of the numerical weather prediction (NWP) model cover the following : fall speed, accretion, autoconversion, droplet size distribution, etc. However, the microphysical processes and parameters have a significant degree of uncertainty. Parameter estimation was generally used to reduce errors in NWP models associated with uncertainty. In this study, the micro- genetic algorithm and harmony search algorithm were used as an optimization algorithm for estimating parameters. And we estimate parameters of microphysics for the Unified model in the case of precipitation in Korea. The differences which occurred during the optimization process were due to different characteristics of the two algorithms. The micro-genetic algorithm converged to about 1.033 after 440 times. The harmony search algorithm converged to about 1.031 after 60 times. It shows that the harmony search algorithm estimated optimal parameters more quickly than the micro-genetic algorithm. Therefore, if you need to search for the optimal parameter within a faster time in the NWP model optimization problem with large calculation cost, the harmony search algorithm is more suitable.