• 제목/요약/키워드: Time Warping

검색결과 296건 처리시간 0.027초

Real-time Virtual-viewpoint Image Synthesis Algorithm Using Kinect Camera

  • Lee, Gyu-Cheol;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1016-1022
    • /
    • 2014
  • Kinect is a motion sensing camera released by Microsoft in November 2010 for the Xbox360 that is used to produce depth and color images. Because Kinect uses an infrared pattern, it generates holes and noises around an object's boundaries in the obtained images. The flickering phenomenon and unmatched edges also occur. In this paper, we propose a real time virtual-view video synthesis algorithm which results in a high quality virtual view by solving these problems stated above. The experimental results show that the proposed algorithm performs much better than the conventional algorithms.

시계열 데이터베이스에서 타임 워핑 하의 서브시퀀스 매칭의 성능 최적화 (Optimization of Subsequence Matching Under Time-Warping in Time-Series Databases)

  • 김만순;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.117-120
    • /
    • 2004
  • 본 논문에서는 시계열 데이터베이스에서 타임 워핑 하의 서브시퀀스 매칭을 효과적으로 처리하는 방안에 관하여 논의한다. 타임 워핑은 데이터베이스내 시퀀스들의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀀스들을 찾을 수 있도록 해 준다. 본 논문에서는 타임 워핑 하의 서브시퀀스 매칭을 위한 기존의 기본 처리 방식인 Naive-Scan의 CPU 처리 과정을 최적화하는 새로운 기법을 제안한다. 제안된 기법은 질의 시퀀스와 서브시퀀스들 간의 타임 워핑 거리들을 계산하는 과정에서 발생하는 중복 작업들을 사전에 제거함으로써 CPU 처리 성능을 극대화한다. 제안된 기법이 착오 기각을 발생시키지 않음과 Naive-Scan을 처리하기 위한 최적의 기법임을 이론적으로 규명한다. 또한, 다양한 실험을 통한 성능 평가에 의하여 제안된 최적화 기법이 가져오는 성능 개선 효과를 정량적으로 검증한다. 아울러, 제안된 기법이 기존의 여과 단계를 포함하는 방식인 LB-Scan과 ST-Filter의 후처리 단계에도 성공적으로 적용될 수 있음을 보인다.

  • PDF

시계열 내부 구조 기반 그래프 생성을 통한 행동 분류 모델 (Behavior Classification Model Based on Graph Generation Using Time Series Structural Feature)

  • 최혁순;양진환;김시웅;김성식;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.37-40
    • /
    • 2024
  • 본 연구에서는 웨어러블 디바이스로부터 수집된 다변량 반려동물 행동 데이터를 처리하기 위해, GCN(Graph Convolutional Network)과 GRU(Gated Recurrent Unit)를 결합한 모델을 제안한다. 제안된 모델은 시계열 내부 구조를 활용하여 그래프 구조로 변환하고, DTW(Dynamic Time Warping) 유사도 분석을 통해 노드 간의 시간적 유사도를 기반으로 엣지를 생성한다. 실험결과로 DTW 기반 엣지 생성 방식이 유클리드 거리 및 선형 방식에 비해 더 높은 성능을 나타냈다. 본 연구는 반려동물의 행동을 정확히 분류하기 위한 효과적인 방법론을 제공한다.

시계열 군집분석과 로지스틱 회귀분석을 이용한 골목상권 성장요인 연구 (Analyzing Growth Factors of Alley Markets Using Time-Series Clustering and Logistic Regression)

  • 강현모;이상경
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.535-543
    • /
    • 2019
  • 최근 들어 경리단길처럼 빠른 성장세를 보이는 골목상권에 대한 사회적 관심이 높아지면서 골목상권 성장요인에 대한 분석의 필요성이 커지고 있다. 이 연구에서는 서울시의 골목상권 매출액 자료에 동적타임워핑(DTW)을 적용한 시계열 군집분석을 통해 성장 골목상권을 찾아내고 로지스틱 회귀분석을 통해 골목상권의 성장에 영향을 미치는 요인들을 분석하였다. 군집분석 결과, 성장상권은 서남권과 동북권, 동남권에 많이 분포하는 것으로 나타났지만 성장상권의 권역 내 비중은 서북권, 동북권, 서남권이 높게 나타난 반면 동남권은 낮게 나타났다. 로지스틱 회귀분석 결과, 20~30대가 매출액에 미치는 영향은 50대에 비해 낮지만 성장에 미치는 영향은 더 큰 것으로 나타났다. 또한, 소득이 높은 지역에 위치한 골목상권들은 성장 한계에 도달한 경우가 많아 정체 또는 쇠퇴하는 경향이 나타났다. 지하철에 가까운 골목상권일 경우 매출액은 더 많지만 성장성은 오히려 떨어지는 것으로 나타났다. 본 연구는 기존연구에서 다루어지지 않던 골목상권의 성장요인을 처음으로 분석했다는 점에서 의의를 둘 수 있다.

KNIME 분석 플랫폼 기반 스마트 미터 빅 데이터 클러스터링 (Clustering of Smart Meter Big Data Based on KNIME Analytic Platform)

  • 김용길;문경일
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.13-20
    • /
    • 2020
  • 빅 데이터 관련 주요 논제 중의 하나는 방대한 시간 기반 또는 원격 측정 데이터의 가용성에 관한 문제이다. 현재 저비용 획득 및 저장 장치의 등장은 더 세밀한 분석에 사용될 상세한 시간 데이터를 얻을 수 있어서 배후 시스템에 대해 여러 가지 지식을 갖거나 미래의 이벤트를 더 정확히 예측할 수 있다. 특히, 스마트 미터가 설치된 수많은 가정 및 기업 등을 대상으로 전기 사용에 관한 고객 맞춤형 계약을 정의하는 것은 다른 무엇보다도 중요한 문제이다. 수많은 스마트 미터 데이터를 바탕으로 공통적인 전력 소비 형태를 몇 가지 그룹으로 구분할 필요가 있다. 이에 본 연구에서는 스마트 미터 측정 관련 공개 데이터와 자바 기반 공개 소스인 KNIME 플랫폼을 사용하여 스마트 미터 관련 빅 데이터 변환과 클러스터링을 나타낸다. 빅 데이터 구성 요소는 공개 소스는 아니지만, 시험판으로 사용할 수 있다. 스마트 미터 빅 데이터를 가져오고, 정리하고, 변환한 후 전력 사용량 행위와 관련된 각 미터 ID의 해석과 클러스터링에 적합한 DTW 접근 방식을 통해 전력 사용 행위에 관한 스마트 계약을 정의할 수 있다.

적외선 비디오에서 Gain과 Offset 결합 보정을 통한 고정패턴잡음 제거기법 (Fixed Pattern Noise Reduction in Infrared Videos Based on Joint Correction of Gain and Offset)

  • 김성민;배윤성;장재호;나종범
    • 대한전자공학회논문지SP
    • /
    • 제49권2호
    • /
    • pp.35-44
    • /
    • 2012
  • 대부분의 최근 적외선 센서는 focal-plane array (FPA) 구조로 되어있다. 이러한 구조의 센서는 공간적 불균일 응답성을 갖는 것으로 알려져 있고, 이로 인해 고정패턴잡음을 발생시킴으로써 영상열화를 가져온다. 따라서 적외선 영상의 고정패턴잡음을 제거하기 위해서는 픽셀 불균일 보정을 해야 한다. 픽셀 불균일 보정기법은 참조물체기반 접근법과 영상기반 접근법으로 나눌 수 있다. 참조물체기반 접근법에서는 흑체와 같은 균일한 온도를 갖는 물체를 이용해서 고정패턴잡음을 분리시킬 수 있는 방법이다. 하지만 센서의 응답성은 시간이 지나면서 변할 수 있기 때문에, 최근에는 비디오 영상을 이용하는 영상기반 접근법이 많이 연구되고 있다. 영상기반 접근법들 중에서 칼만 필터를 기반으로 하는 최신 알고리듬은 영상 간에 움직임 보상 시에 한 방향 워핑을 이용하고 센서의 offset 불균일성만을 보상해준다. 하지만 한 방향 워핑을 이용한 시스템 모델은 영상의 경계 부근에서 고정패턴잡음을 효과적으로 제거하지 못한다. 게다가, offset만 보정하는 접근법은 gain의 불균일성의 영향을 많이 받는 영상에서는 성능이 악화될 수 있다. 그러므로 본 논문에서는 양방향 워핑을 이용하여 시스템 모델링을 하고, gain과 offset의 결합 보정을 수행하는 알고리듬을 제안한다. 모사 영상과 실제 영상에 대한 실험 결과들은 제안하는 알고리듬이 기존 알고리듬들보다 더 효과적으로 고정패턴잡음을 제거하는 것을 확인할 수 있다.

배경 영역의 시간적 일관성이 향상된 고해상도 깊이 동영상 생성 방법 (Temporally-Consistent High-Resolution Depth Video Generation in Background Region)

  • 신동원;호요성
    • 방송공학회논문지
    • /
    • 제20권3호
    • /
    • pp.414-420
    • /
    • 2015
  • 3차원 영상 시스템에서 깊이 영상은 3차원 콘텐츠를 표현하는데 있어 매우 중요한 역할을 수행한다. 그러나 깊이 카메라로부터 얻은 원본 깊이 영상은 해상도가 색상 영상에 비해 매우 작고 시간적 흐름의 측면에서 관찰하였을 때 깊이 값이 불안정하게 진동하는 깜빡임 문제가 발생한다. 이 문제는 시청자들이 3차원 콘텐츠를 감상할 때 불편한 느낌을 초래한다. 이 논문에서는 원본 깊이 영상의 저해상도 문제를 해결하기 위해 3차원 워핑과 깊이 가중치가 추가된 결합형 양방향 업샘플링 방법을 사용한다. 다음으로 깊이 영상의 배경 영역에서 발생하는 깜빡임 문제를 해결하기 위해 전경과 배경을 분리한 뒤, 전경 영역에는 업샘플링된 깊이 영상을 사용하고 배경 영역에는 시간적 평균값 필터 영상을 이용했다. 실험결과는 제안하는 방법이 시간적 일관성이 향상된 고해상도의 깊이 영상을 생성함을 보였다.

2차원 기상 위성 영상의 구름 모델링 기법을 이용한 3차원 구름 애니메이션 (3D Cloud Animation using Cloud Modeling Method of 2D Meteorological Satellite Images)

  • 이정진;강문구;이호;신병석
    • 한국게임학회 논문지
    • /
    • 제10권1호
    • /
    • pp.147-156
    • /
    • 2010
  • 본 논문에서는 기상 위성으로부터 수신된 2차원 영상들을 구름 모델링 기법을 이용하여 3차원 입체 영상으로 재구성하는 구름 애니메이션 방법을 제안한다. 먼저 위성 영상들에 다수의 제어점을 분포시킨 후, 박판 스플라인 워핑 해석을 통하여 구름의 움직임을 모델링한다. 이에 더하여 가시채널과 적외채널 영상으로부터 구름의 양과 높낮이 정보를 추출하여 입체감을 가진 3차원 구름을 모델링한다. 구름 가시화를 위하여 적은 수의 볼륨데이터 슬라이스로도 우수한 품질의 영상을 빠르게 얻을 수 있는 선적분 볼륨 렌더링 방식을 사용한다. 제안 기법으로 2차원 위성 영상으로부터 적절한 속도와 화질을 갖는 3차원 구름 애니메이션이 가능하다.

가상현실을 이용한 동화상 도서관의 구현 (The Implementation of Video Library using VR)

  • 김동현
    • 한국정보통신학회논문지
    • /
    • 제7권7호
    • /
    • pp.1456-1461
    • /
    • 2003
  • 최근 멀티미디어 환경에서 보다 진보된 가상현실의 환경을 요구하고 있다. 가상현실은 광범위한 응용분야를 창출할 수 있으며 여러 분야의 핵심적인 기술요소들이 통합되어야만 가상현실을 구현할 수 있고 기술적인 분야에서 커다란 전환을 가져오므로서 최근에 급속한 주목을 받아오고 있다. 동화상 정보 시스템에서 입체영상을 구축하기 위해서는 도서관내 전경 및 도서들의 2D 좌/우 이미지를 활용하여 가상현실 시스템 구조는 display, tracking, computation의 세 가지 구성 요소로 이루어지며, 또한 사운드 출력, 음성 출력, 음성 인식이 요구되어진다. 이러한 3D 가상현실 시스템을 이용하여 구조적 구상화, 설계, 교육과 훈련, 공간 탐험, 오락과 같은 많은 분야에 응용될 수 있다.

K-shape 군집화 기반 블랙-리터만 포트폴리오 구성 (Black-Litterman Portfolio with K-shape Clustering)

  • 김예지;조풍진
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.63-73
    • /
    • 2023
  • This study explores modern portfolio theory by integrating the Black-Litterman portfolio with time-series clustering, specificially emphasizing K-shape clustering methodology. K-shape clustering enables grouping time-series data effectively, enhancing the ability to plan and manage investments in stock markets when combined with the Black-Litterman portfolio. Based on the patterns of stock markets, the objective is to understand the relationship between past market data and planning future investment strategies through backtesting. Additionally, by examining diverse learning and investment periods, it is identified optimal strategies to boost portfolio returns while efficiently managing associated risks. For comparative analysis, traditional Markowitz portfolio is also assessed in conjunction with clustering techniques utilizing K-Means and K-Means with Dynamic Time Warping. It is suggested that the combination of K-shape and the Black-Litterman model significantly enhances portfolio optimization in the stock market, providing valuable insights for making stable portfolio investment decisions. The achieved sharpe ratio of 0.722 indicates a significantly higher performance when compared to other benchmarks, underlining the effectiveness of the K-shape and Black-Litterman integration in portfolio optimization.