• Title/Summary/Keyword: Time Structure

Search Result 13,960, Processing Time 0.038 seconds

The relationship between time-varying eccentricity of load with the corner lateral displacement response of steel structure during an earthquake

  • Takin, Kambiz;Hashemi, Behrokh H.;Nekooei, Masoud
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.801-812
    • /
    • 2016
  • In an actual design, none of the structures with shear behaviors will be designed for torsional moments. Any failure or damages to roofs, infills, shear walls, and braces caused by an earthquake, will inevitably result in relocation of center of mass and rigidity of the structure. With these changes, the dynamic characteristics of structure could be changed during an earthquake at any moment. The main objective of this paper is to obtain the relationship between time-varying eccentricity of load and corner lateral displacement. In this study, various methods have been used to determine the structural response for time-varying lateral corner displacement. As will be seen below, some of the structural calculation methods result in a significant deviation from the actual results, although these methods include the interaction effects of modes. Controlling the lateral displacement of structure can be performed in different ways such as, passive dampers, friction dampers, semi-active systems including the MR damper and active Systems. Selecting and locating these control systems is very important to bring the maximum safety with minimum cost into the structure. According to this study will be show the relation between the corner lateral displacements of structure and time-varying eccentricity by different kind of methods during an earthquake. This study will show that the response of the structure at the corners due to an earthquake can be very destructive and because of changing the eccentricity of load, calculating the maximum possible response of system can be carried out by this method. Finally, some kind of systems must be used for controlling these displacements. The results shows that, the CQC, DSC and exact methods is comply each other but the results of Vanmark method is not comfortable for these kind of buildings.

Developing a smart structure using integrated DDA/ISMP and semi-active variable stiffness device

  • Karami, Kaveh;Nagarajaiah, Satish;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.955-982
    • /
    • 2016
  • Recent studies integrating vibration control and structural health monitoring (SHM) use control devices and control algorithms to enable system identification and damage detection. In this study real-time SHM is used to enhance structural vibration control and reduce damage. A newly proposed control algorithm, including integrated real-time SHM and semi-active control strategy, is presented to mitigate both damage and seismic response of the main structure under strong seismic ground motion. The semi-active independently variable stiffness (SAIVS) device is used as semi-active control device in this investigation. The proper stiffness of SAIVS device is obtained using a new developed semi-active control algorithm based on real-time damage tracking of structure by damage detection algorithm based on identified system Markov parameters (DDA/ISMP) method. A three bay five story steel braced frame structure, which is equipped with one SAIVS device at each story, is employed to illustrate the efficiency of the proposed algorithm. The obtained results show that the proposed control algorithm could significantly decrease damage in most parts of the structure. Also, the dynamic response of the structure is effectively reduced by using the proposed control algorithm during four strong earthquakes. In comparison to passive on and off cases, the results demonstrate that the performance of the proposed control algorithm in decreasing both damage and dynamic responses of structure is significantly enhanced than the passive cases. Furthermore, from the energy consumption point of view the maximum and the cumulative control force in the proposed control algorithm is less than the passive-on case, considerably.

Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution (동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

Structural Diagnosis in Time Domain on Damage Size (손상크기에 따른 시간영역에서의 구조물 진단)

  • 권대규;임숙정;방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.259-262
    • /
    • 2002
  • This paper provides the experimental verification of a non-destructive time domain approach to examine structural damage. Time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure cause changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the use of beam like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters, and hence to detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different location and with damage of different dimensions. It is demonstrated that the method can sense the presence of damage, and characterize the damage to a satisfactory precision.

  • PDF

A derivation of real-time simulation model on the large-structure driving system and its application to the analysis of system interface characteristics (대형구조물 구동계통 실시간 시뮬레이션 모델 유도 및 연동 특성 분석에의 응용)

  • Kim, Jae-Hun;Choi, Young-Ho;Yoo, Woong-Jae;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.13-25
    • /
    • 2000
  • A simulation model is developed to analyze the large-structure driving system and its integrated behavior in the whole weapon system. It models every component in the driving system such as mechanical and electrical characteristics, and it is programmed by simulation language in a way which strongly reflects the system's real time dynamics and reduces computation time as well. A useful parameter identification method is proposed, and it is tuned on the given physical system. The model is validated through comparing to real test, and it is applied to analysis and prediction of integrated system functions relating to the fire control system.

  • PDF

A Study on the Nonlinear Analysis of Dynamic Response of Shell Structure (Shell 구조물의 비선형 동적응답 해석에 관한 연구)

  • Bae, Dong-Myung;Jin, Jong-Dae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-92
    • /
    • 1992
  • This is analyzed using the finite element method which is appling excellent isoparametric curve element in the aspect of large usages of dynamic responses in which is regarding geometric and material nonlinear of a large scale shell structure of an airplane, a submarine, a ship, and an ocean structure. The solution of dynamic equations is got by direct integration method using time-stepping procedure and regarding Central Difference Method of the both solutions. But because formal matrix factorization is not necessary in each time step and it does not take less time to compute relatively, this method must be regarded very few time steps on the condition. Axisymmatric shell problems are inspected using 8 node Isoparametric element in this paper. Partial axisymmatric spherical shell is used as a model to analyze axisymmatric nonlinear dynamic behavior regarding. Total Lagrangian formulation in geometric nonlinear behavior and elastio-viscoplastic in material nonlinear behavior.

  • PDF

An Optimal FIR Filter for Discrete Time-varying State Space Models (이산 시변 상태공간 모델을 위한 최적 유한 임펄스 응답 필터)

  • Kwon, Bo-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1183-1187
    • /
    • 2011
  • In this paper, an optimal FIR (Finite-Impulse-Response) filter is proposed for discrete time-varying state-space models. The proposed filter estimates the current state using measured output samples on the recent time horizon so that the variance of the estimation error is minimized. It is designed to be linear, unbiased, with an FIR structure, and is independent of any state information. Due to its FIR structure, the proposed filter is believed to be robust for modeling uncertainty or numerical errors than other IIR filters, such as the Kalman filter. For a general system with system and measurement noise, the proposed filter is derived without any artificial assumptions such as the nonsingular assumption of the system matrix A and any infinite covariance of the initial state. A numerical example show that the proposed FIR filter has better performance than the Kalman filter based on the IIR (Infinite- Impulse-Response) structure when modeling uncertainties exist.

A Novel LC Device Associated with Optically Compensated Splay Structure (광학적 자기 보상 스플레이 구조를 갖는 새로운 액정 소자)

  • 김승재;이종문;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.536-540
    • /
    • 2004
  • A novel nematic liquid crystal (LC) cell with splay structure exhibiting wide viewing angle, fast response time and high transmittance at the same time has been developed. With rubbed homeotropic alignment in parallel directions, the device shows bend alignment in the absence of vertical electric field. However, with applied high voltage in a pulse form, the LC shows a optically compensated splay (OCS) orientation such that the mid-director is parallel to a substrate and at both surfaces the LCs are aligned vertically in parallel direction. In the device, the birefringence of the cell becomes tunable with applying voltage, i.e., the amount of light passed through the cell can be controlled by controlling the orientation of the LC. Since the OCS cell has a self-compensation structure such that the LC has a mirror symmetry along the mid-director, the device shows a wide viewing angle with only a single domain and a fast response time.

Soil-Structure Interaction Analysis in the Time Domain Using Explicit Frequency-Dependent Two Dimensional Infinite Elements (명시적 주파수종속 2차원 무한요소를 사용한 지반-구조물 상호작용의 시간영역해석)

  • 윤정방;김두기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.42-49
    • /
    • 1997
  • In this paper, the method for soil-structure interaction analyses in the time domain is proposed. The far field soil region which is the outside of the artificial boundary is modeled by using explicit frequency-dependent two dimensional infinite elements which can include multiple wave components propagating into the unbounded medium. Since the dynamic stiffness matrix of the far field soil region using the proposed infinite elements is obtained explicitly in terms of exciting frequencies and constants in the frequency domain, the matrix can be easily transformed into the displacement unit-impulse response matrix, which corresponds to a convolution integral of it in the time domain. To verify the proposed method for soil-structure interaction analyses in the time domain, the displacement responses due to an impulse load on the surface of a soil layer with the rigid bed rock are compared with those obtained by the method in the frequency domain and those by models with extend finite element meshes. Good agreements have been found between them.

  • PDF

Development of LCCA Module Using STEP-based LCCA Data Structure (STEP 기반 LCC 분석 데이터구조를 이용한 LCC 분석모듈 개발)

  • Kim, Dong-Hyun;Huang, Meng-Gang;Kim, Bong-Geun;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.803-808
    • /
    • 2007
  • LCCA module enabling to estimate LCC and analyze time-variant reliability index of a plate girder bridge was developed. The developed module was based on the designed data structure following the standardized methodology of ISO/STEP, LCCA module consisted of LCC estimation module, which is composed of six sub modules according to the cost category, and reliability index analysis module, which is composed of time-variant corrosion sub module, time-variant live load sub module, and element reliability analysis sub module, The effectiveness of the developed LCCA module was verified by estimating LCC and analyzing time-variant reliability index of a plate girder bridge on the basis of the constructed test database.

  • PDF