• 제목/요약/키워드: Time Series Network Analysis

검색결과 283건 처리시간 0.026초

Analysis of an Active Superconducting Current Controller (ASCC) Considering the Transient Stability and OCR Operation in Transmission and Distribution Systems

  • Gusheh, Ahmad Ghafari;Soreshjani, Mohsen Hosseinzadeh;Rahat, Omid
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.543-550
    • /
    • 2016
  • The Active Superconducting Current Controller (ASCC) is a new type of Superconducting Fault Current Limiters (SFCL) which can limit the fault current in different modes. It also has the particular abilities of compensating active and reactive powers for electrical networks. In this paper, it is confirmed that the performance of ASCC in different operating modes introduces a limiting impedance in series with the network which can even degrade the transient stability and the operation of the Over-Current Relays (OCR) employed in a power system. In addition, the model of a three-phase ASCC is simulated, and the effect of descriptive modes on the current limiting level is investigated. For the transient stability analysis, a single machine-infinite bus system is tested, and the effect of operation modes is studied based on an equal area criterion obtaining the critical time and the critical angle. Modifying the setting parameters of OCR such as time dial and pick-up current, the protective coordination is also studied in different operating modes.

Research on the change of perception of abandoned dogs through big data analysis

  • Jang, Ji-Yun;Lee, Seok-Won
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권9호
    • /
    • pp.115-123
    • /
    • 2021
  • 본 연구에서는 빅데이터 분석을 통해 유기견에 대한 국민 인식 변화를 분석하고자 한다. 2017년 1월부터 2020년 7월까지의 데이터를 수집하여 유기견을 키워드로 한 사회적 이슈의 양적변화가 유기견에 대한 국민 인식에 어떠한 영향을 끼쳤고, 긍정/부정적인 인식에 영향을 주는 요인들을 분석하였다. 연구 결과, 유기견 수와 유기견과 관련한 문서 수는 양의 상관관계를 가지고 있음을 확인할 수 있었고, 텍스트 마이닝과 네트워크 분석, 감정 분석 등 다양한 분석 기법을 통해 구체적으로 어떠한 시계열적 변화가 있는지 알 수 있었다. 이 연구는 유기견에 대한 정책 수립이나 다른 연구에 활용될 수 있는 기본 데이터로써 의의를 가질 것이다. 유기견에 대한 인식을 개선하고 책임의식을 기를 수 있도록 문제를 해결해 나가는데 도움이 되기를 기대한다.

섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용 (Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM)

  • 이현상;조보근;오세환;하성호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권3호
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

토사터널의 쉴드 TBM 데이터 시계열 분석을 통한 막장 전방 예측 연구 (A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel)

  • 정지희;김병규;정희영;김해만;이인모
    • 한국터널지하공간학회 논문집
    • /
    • 제21권2호
    • /
    • pp.227-242
    • /
    • 2019
  • 토압식(Earth Pressure-Balanced, EPB) 쉴드 TBM 기계데이터 분석을 통해 토사터널의 특징이 반영된 막장 전방 예측 방법을 제안하였다. 기존에 암반과 토사가 혼합된 복합 지반의 예측에 적용하였던 시계열 분석 모델을 토사터널에 적용가능하도록 수정하였다. 또한 수정된 모델을 사용하여, 토사 종류에 따라 쏘일 컨디셔닝 재료를 선택하는 것이 타당한지 연구하였다. 이를 위해 Self-Organizing Map (SOM) 군집화(clustering) 분석을 수행하였다. 그 결과 무엇보다도 지반타입이 #200체 통과량 35% 기준으로 분류되어야 한다는 것을 확인하였다. 또한 TBM 기계데이터 분석을 통해 수정된 모델이 지반 타입을 예측하는데 사용될 수 있음을 확인하였다. 수정된 기준에 따라 지반 타입을 분류하고 시계열 분석을 수행하면, 10막장 전방 지반에 대해서 98%의 높은 예측 정확도를 보였으며, 이를 통해 수정된 방법의 우수성이 입증되었다. 특히 지반 타입 변화 구간에 대한 예측 정확도도 약 93%로, 10막장 전방에서 지반 타입 변화 여부를 미리 확인할 수 있게 되었다.

자동차 ECU제어를 위한 음성인식 패턴매칭레벨에 관한 연구 (A Study on Voice Recognition Pattern matching level for Vehicle ECU control)

  • 안종영;김영섭;김수훈;허강인
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.75-80
    • /
    • 2010
  • 자동차 환경에서의 음성인식은 잡음처리가 매우 중요한 요소이다. 하드웨어 및 소프트웨어로 적인 접근방법으로 많은 연구가 되어 지고 있다. 하드웨어적인 방법으로는 Low-pass filter를 기본으로한 잡음처리 필터가 많이 연구되어 가시적인 성과를 보이고 있고, 소프트웨어적으로는 Noise canceler, 신경망 등 패턴인식 알고리듬의 연구가 이루어지고 있다. 본 논문에서는 시계열 패턴인식에 적용 가능한 알고리듬인 DTW(Dynamic Time Warping)를 자동차 잡음환경에 적용하여 그 음성인식을 위한 파라미터 패턴에 대한 매칭 레벨을 분류하여 잡음환경 적합한 패턴 매칭 레벨을 분석 하였다.

문턱값과 추세분석을 이용한 지하수 수질관리체계 구축을 위한 연구 (Suggestion of a Groundwater Quality Management Framework Using Threshold Values and Trend Analysis)

  • 안현실;진성욱;이수재;현윤정;윤희성;김락현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권7호
    • /
    • pp.112-120
    • /
    • 2015
  • Statistical trend analysis using the data from the National Groundwater Quality Monitoring Network (NGQMN) of Korea was conducted to establish a new groundwater quality management framework. Sen’s test, a non-parametric statistical method for trend analysis, was used to determine the linear trend of the groundwater quality data. The analysis was conducted at different confidence levels (i.e., at 70, 80, 90, 95, and 99% confidence levels) for three of groundwater quality parameters, i.e., nitrate-nitrogen, chloride, and pH, which have sufficient time series of the NGQMN data between 2007 and 2013. The results showed that different trends can be determined for different depths even for the same monitoring site and the numbers of wells having significant trends vary with different confidence levels. The wells with increasing or decreasing trends were far less than the wells with no trend. Chloride had more wells with increasing trend than other parameters. On the other hand, nitrate-nitrogen had the most wells with increasing trend and concentration exceeding 75% of the threshold values (TVs). Based on the methodology used for this study, we suggest including groundwater TVs and trend analysis to evaluate groundwater quality and to establish an advanced groundwater quality management framework.

4단자 회로망 모델을 이용한 전기철도 차량기지의 전압불평형 해석 (Analysis of Voltage Unbalance in the Electric Railway Depot Using Two-port Network Model)

  • 창상훈;오광해;김정훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권5호
    • /
    • pp.248-254
    • /
    • 2001
  • The traction power demand highly varies with time and train positions and the traction load is a large-capacity current at single phase converted from 3-phase power system. Subsequently, each phase current converted from 3-phase power system cannot be maintained in balance any longer and thus the traction load can bring about imbalance in three-phase voltage. Therefore, the exact assessment of voltage unbalance must be carried out preferentially as well as load forecast at stages of designing and planning for electric railway system. The evaluation of unbalance voltage in areas, such as electric railway depots should be a prerequisite with more accuracy. The conventional researches on voltage unbalance have dealt with connection schemes of the transformers used in ac AT-fed electric railroads system and induced formulas to briefly evaluate voltage unbalance in the system(3). These formulas are still being used widely due to their easy applicabilities on voltage unbalance evaluation. Meanwhile, they don't take into account detailed characteristics of ac AT-fed electric railroads system, being founded on some assumptions. Accordingly. accuracy still remains in question. This paper proposes a new method to more effectively estimate voltage unbalance index. In this method, numerous diverted circuits in electric railway depots are categorized in three components and each component is defined as a two-port network model. The equivalent circuit for the entire power supply system is also described into a two-port network model by making parallel and/or series connections of these components. Efficiency and accuracy in voltage unbalance calculation as well can be promoted by simplifying the circuits into two-port network models.

  • PDF

Intelligent optimal grey evolutionary algorithm for structural control and analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • 제33권5호
    • /
    • pp.365-374
    • /
    • 2024
  • This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.

Development of machine learning model for automatic ELM-burst detection without hyperparameter adjustment in KSTAR tokamak

  • Jiheon Song;Semin Joung;Young-Chul Ghim;Sang-hee Hahn;Juhyeok Jang;Jungpyo Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.100-108
    • /
    • 2023
  • In this study, a neural network model inspired by a one-dimensional convolution U-net is developed to automatically accelerate edge localized mode (ELM) detection from big diagnostic data of fusion devices and increase the detection accuracy regardless of the hyperparameter setting. This model recognizes the input signal patterns and overcomes the problems of existing detection algorithms, such as the prominence algorithm and those of differential methods with high sensitivity for the threshold and signal intensity. To train the model, 10 sets of discharge radiation data from the KSTAR are used and sliced into 11091 inputs of length 12 ms, of which 20% are used for validation. According to the receiver operating characteristic curves, our model shows a positive prediction rate and a true prediction rate of approximately 90% each, which is comparable to the best detection performance afforded by other algorithms using their optimized hyperparameters. The accurate and automatic ELM-burst detection methodology used in our model can be beneficial for determining plasma properties, such as the ELM frequency from big data measured in multiple experiments using machines from the KSTAR device and ITER. Additionally, it is applicable to feature detection in the time-series data of other engineering fields.

Predicting Stock Prices Based on Online News Content and Technical Indicators by Combinatorial Analysis Using CNN and LSTM with Self-attention

  • Sang Hyung Jung;Gyo Jung Gu;Dongsung Kim;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • 제30권4호
    • /
    • pp.719-740
    • /
    • 2020
  • The stock market changes continuously as new information emerges, affecting the judgments of investors. Online news articles are valued as a traditional window to inform investors about various information that affects the stock market. This paper proposed new ways to utilize online news articles with technical indicators. The suggested hybrid model consists of three models. First, a self-attention-based convolutional neural network (CNN) model, considered to be better in interpreting the semantics of long texts, uses news content as inputs. Second, a self-attention-based, bi-long short-term memory (bi-LSTM) neural network model for short texts utilizes news titles as inputs. Third, a bi-LSTM model, considered to be better in analyzing context information and time-series models, uses 19 technical indicators as inputs. We used news articles from the previous day and technical indicators from the past seven days to predict the share price of the next day. An experiment was performed with Korean stock market data and news articles from 33 top companies over three years. Through this experiment, our proposed model showed better performance than previous approaches, which have mainly focused on news titles. This paper demonstrated that news titles and content should be treated in different ways for superior stock price prediction.