이 연구에서는 국토지리정보원 14개 GPS 상시관측소에서 수집된 약 5년간의 GPS 자료를 고정밀 처리하여 연속적인 수직좌표 시계열을 생성하였다. 그리고 1차 선형회귀식을 사용하여 GPS 상시관측소 속도를 계산하였으며, GPS 수직좌표 변동 경향을 분석하기 위해 주성분분석을 실시하였다. 가장 우세한 성분의 신호를 나타내는 모드 1을 대상으로 분석한 결과 약 4.2mm/yr의 수직 속도가 산출되었다. 그리고 모드 1의 고유 벡터 값에서 일관성을 보였다. 따라서 분석대상 기간 동안에는 모든 관측소가 일제히 상승하는 신호를 보이고 있음을 알 수 있었다. 또한 14개 GPS 상시관측소 시계열에서 주성분분석을 통해 산출된 모드 1 신호를 제거하고 모드 1의 신호 제거 전 후에 따른 관측소 수직좌표 시계열의 정밀도 변화를 분석하였다. 그 결과, 수직좌표 시계열의 정밀도는 평균 34.8% 향상되었다.
본 논문에서 인공 신경망을 이용한 시계열 데이터 예측 사례에 대해 서술한다. 본 연구에서는 텐서 플로우 라이브러리를 사용하여 배치 기반의 인공 신경망과 스타케스틱 기반의 인공신경망을 구현하였다. 실험을 통해, 구현된 각 신경망에 대해 훈련 에러와 시험에러를 측정하였다. 신경망 훈련과 시험을 위해서 미국의 인디아나주의 공식 웹사이트로부터 8개월간 수집된 세금 데이터를 사용하였다. 실험 결과, 배치 기반의 신경망 기법이 스타케스틱 기법보다 좋은 성능을 보였다. 또한, 좋은 성능을 보인 배치 기반의 신경망을 이용하여 약 7개월 간 종합 세수 예측을 수행하고 예측된 결과와 실제 데이터를 수집하여 비교 실험을 진행 하였다. 실험 결과, 예측된 종합 세수 금액 결과가 실제값과 거의 유사하게 측정되었다.
하나의 유전자는 또 다른 유전자의 단백질과 프로모터 영역에서 Binding 함으로써 그 유전자의 발현에 영향을 미칠 수 있다. 이러한 두 유전자간의 조절 상호 작용을 유전자 조절망이라 하며 유전체의 핵심적인 기능을 보다 간결하게 표현하는 조절망을 설계할 수 있다. 대표적인 설계 방법으로는 Time-Series Data 를 이용한 방법과 Steady-State Data 를 이용하는 방법이 있으며 이 논문에서는 Steady-State Data 즉, Knock-out Data 를 이용하여 유전자 조절망을 재구성함으로써 기존의 방법을 개선하여 보다 정확한 결과 예측을 목표로 한다.
본 논문에서는 시계열 데이터베이스에서 타임 워핑 하의 서브시퀀스 매칭을 효과적으로 처리하는 방안에 관하여 논의한다. 타임 워핑은 시퀀스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀀스들을 찾을 수 있도록 해 준다. 먼저, 사전 실험을 통하여 기존의 기본적인 처리 방식인 Naive-Scan의 성능 병목이 CPU 처리 과정에 있음을 지적하고, Naive-Scan의 CPU 처리 과정을 최적화하는 새로운 기법을 제안한다. 제안된 기법은 질의 시퀀스와 서브시퀀스들간의 타임 워핑 거리들을 계산하는 과정에서 발생하는 중복 작업들을 사전에 제거함으로써 CPU 처리 성능을 극대화한다. 제안된 기법이 착오 기각을 발생시키지 않음과 Naive-Scan을 처리하기 위한 최적의 기법임을 이론적으로 증명한다. 또한, 제안된 기법을 기존의 타임 워핑 하의 서브시퀀스 매칭 기법인 LB-Scan과 ST-Filter의 후처리 정량적으로 검증한다. 실험 결과에 의하면, 기존의 타임 워핑 하의 서비시퀀스 매칭을 위한 모든 기법들이 제안된 최적화 기법에 의하여 성능이 개선되는 것으로 나타났다. 특히, Nsive-Scan은 최적화 기법의 적용 전에는 가장 떨어지는 성능을 보였으나, 최적화 기법의 적용 후에는 모든 경우에서 ST-Filter나 LB-Scan을 사용한 경우보다 더 좋은 성능을 보였다. 이것은 성능 병목인 CPU 처리 과정을 최적화함으로써 기존 기법들인 Naive-Scan, LB-Scan, ST-Filter 간의 처리 성능 상의 순위 역전 현상이 발생하였음을 보이는 매우 중요한 결과이다.
최근 5G와 인공지능 기술이 발전하면서 클라우드 엣지 환경에서 정보를 수집/처리/분석 하기 위한 AIoT 기술에 많은 관심을 갖고 있다. AIoT 기술은 다양한 스마트 환경에 적용되고 있지만 수집된 정보의 정확한 분석을 통해 빠른 대응처리를 수행할 수 있는 연구가 필요하다. 본 논문에서는 스마트 환경에서 수집된 정보를 AIoT에서 빠른 처리와 정확한 분석/예측을 통해 AIoT 정보들간 연계 처리를 블록 처리함으써 대역폭 및 처리시간을 최소화할 수 있는 기법을 제안한다. 제안 기법은 블록체인으로 수집된 정보를 다중 연계하여 AIoT 장치에서 데이터 인덱스에 대한 시드를 생성하여 수집정보와 함께 블록처리하여 데이터 센터로 전달한다. 이 때, 클라우드와 AIoT 장치사이는 DNN(Deep Neural Network) 모델을 배치하여 네트워크 오버헤드를 줄이도록 하였다. 그리고, 서버/데이터센터에서는 전달된 분석 및 예측된 결과를 통해 정확하지 못한 AIoT 정보의 정확도를 개선하여 지연시간을 최소화하도록 하였다. 또한, 제안기법은 AIoT 정보에 가중치를 적용하여 블록체인으로 그룹핑하기 때문에 계층화된 다층 네트워크로 분할 가능하도록 하여 데이터 지연시간을 최소화하였다.
Park, Suyeul;Kim, Younggun;Choi, Yungjun;Kim, Seok
국제학술발표논문집
/
The 9th International Conference on Construction Engineering and Project Management
/
pp.1100-1105
/
2022
Denoising, registering, and detecting changes of 3D digital map are generally conducted by skilled technicians, which leads to inefficiency and the intervention of individual judgment. The manual post-processing for analyzing 3D point cloud data of construction sites requires a long time and sufficient resources. This study develops automation technology for analyzing 3D point cloud data for construction sites. Scanned data are automatically denoised, and the denoised data are stored in a specific storage. The stored data set is automatically registrated when the data set to be registrated is prepared. In addition, regions with non-homogeneous densities will be converted into homogeneous data. The change detection function is developed to automatically analyze the degree of terrain change occurred between time series data.
Journal of the Korean Data and Information Science Society
/
제28권5호
/
pp.1001-1019
/
2017
신호 처리는 전자 공학의 한 분야로서 시계열 분석과 매우 깊은 연관성을 갖고 있다. 신호 처리를 위해 현재는 상용 프로그램이 널리 사용되고 있는데 적지 않은 비용을 지불해야 한다. 반면 통계 분석을 위해서는 R이라는 무상 프로그램이 널리 사용되고 있다. 본 연구에서는 신호 처리를 위한 R-프로그램 활용서를 만들어 보았다. 본 연구의 구성은 신호 처리에 대한 이론을 간단히 정리하고 적당한 예제들을 택하여 R을 활용하여 구현하는 방식으로 되어있다. 각 단원에 서술 된 이론을 읽고 해당하는 그림과 R 코드를 제 8장에서 찾아서 구현해보는 방법으로 본 활용서를 사용할 수 있겠다. 연구의 순서는 (1). 푸리에 변환과 역변환 (2). 스펙트럼분석 (3). 비모수적 주기도와 모수적 주기도 (4). 필터의 구성과 소음처리 순서로 되어있다. 본 활용서는 신호 처리를 완벽하게 이해하기에는 분명 부족하지만 처음 시작하는 단계로서 도움이 됐으면 한다.
한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
/
pp.252-257
/
1998
A method of multimedia information data acquisition based on fuzzy rules is proposed, where the multimedia means the five senses of a human being. Observed information is characterized by VAGOT(visual, acoustic, gustatory, olfactory and tactile) time series data and the goal is to extract an appropriate subset of the VAGOT data based on a given instruction. Fuzzy rules based on visual and acoustic information are used to identify the appropriate time interval on the fireworks multimedia information.
In this paper, we propose an improved model to provide users with a better long-term prediction of waterworks operation data. The existing prediction models have been studied in various types of models such as multiple linear regression model while considering time, days and seasonal characteristics. But the existing model shows the rate of prediction for demand fluctuation and long-term prediction is insufficient. Particularly in the deep running model, the long-short-term memory (LSTM) model has been applied to predict data of water purification plant because its time series prediction is highly reliable. However, it is necessary to reflect the correlation among various related factors, and a supplementary model is needed to improve the long-term predictability. In this paper, convolutional neural network (CNN) model is introduced to select various input variables that have a necessary correlation and to improve long term prediction rate, thus increasing the prediction rate through the LSTM predictive value and the combined structure. In addition, a multiple linear regression model is applied to compile the predicted data of CNN and LSTM, which then confirms the data as the final predicted outcome.
본 논문에서는 대칭 변환을 지원하는 윤곽선 이미지 매칭 문제를 다룬다. 이미지 매칭에서 이미지의 대칭 변환을 지원하는 것은 직관적이고 정확한 매칭을 위한 매우 중요한 요소이다. 그러나 기존 이미지 매칭에서는 이미지의 회전 변환만 고려하였을 뿐 대칭 변환은 고려하지 않았다. 본 논문에서는 기존 회전-불변 윤곽선 이미지 매칭에 대칭 변환까지 지원하는 대칭-불변 윤곽선 이미지 매칭을 제안한다. 이를 위해, 먼저 이미지 대칭의 개념을 정의하고, 어떠한 대칭각을 사용하더라도 회전-불변 매칭의 결과는 동일함을 정형적으로 증명한다. 또한, 대칭 변환을 위해 이미지 윤곽선으로부터 대칭 시계열을 효율적으로 추출하는 방법을 제안한다. 그런 다음, 이미지를 대칭하여 생성한 대칭 시계열과 원본 이미지 시계열을 직접 대칭하여 생성한 대칭 시계열을 사용한 회전-불변 매칭 결과가 동일함을 정형적으로 증명한다. 실험 결과, 제안하는 대칭-불변 윤곽선 이미지 매칭은 회전 변환만을 지원하는 기존 이미지 매칭에 비해 보다 정확하고 직관적인 결과를 도출하는 것으로 나타났다. 이같은 결과는 대칭-불변 윤곽선 이미지 매칭이 이미지의 대칭 변환 문제를 시계열 도메인에서 해결한 우수한 해결책임을 의미한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.