• 제목/요약/키워드: Time Series Data Processing

검색결과 328건 처리시간 0.027초

Design of Disease Prediction Algorithm Applying Machine Learning Time Series Prediction

  • Hye-Kyeong Ko
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.321-328
    • /
    • 2024
  • This paper designs a disease prediction algorithm to diagnose migraine among the types of diseases in advance by learning algorithms using machine learning-based time series analysis. This study utilizes patient data statistics, such as electroencephalogram activity, to design a prediction algorithm to determine the onset signals of migraine symptoms, so that patients can efficiently predict and manage their disease. The results of the study evaluate how accurate the proposed prediction algorithm is in predicting migraine and how quickly it can predict the onset of migraine for disease prevention purposes. In this paper, a machine learning algorithm is used to analyze time series of data indicators used for migraine identification. We designed an algorithm that can efficiently predict and manage patients' diseases by quickly determining the onset signaling symptoms of disease development using existing patient data as input. The experimental results show that the proposed prediction algorithm can accurately predict the occurrence of migraine using machine learning algorithms.

Time-Efficient Event Processing Using Provisioning-to-Signaling Method in Data Transport Systems Requiring Multiple Processors

  • Kim, Bup-Joong;Ryoo, Jeong-dong;Cho, Kyoungrok
    • ETRI Journal
    • /
    • 제39권1호
    • /
    • pp.41-50
    • /
    • 2017
  • In connection-oriented data transport services, data loss can occur when a service experiences a problem in its end-to-end path. To resolve the problem promptly, the data transport systems providing the service must quickly modify their internal configurations, which are distributed among different locations within each system. The configurations are modified through a series of problem (event) handling procedures, which are carried out by multiple control processors in the system. This paper proposes a provisioning-to-signaling method for inter-control-processor messaging to improve the time efficiency of event processing. This method simplifies the sharing of the runtime event, and minimizes the time variability caused by the amount of event data, which results in a decrease in the latency time and an increase in the time determinacy when processing global events. The proposed method was tested for an event that required 4,000 internal path changes, and was found to lessen the latency time of global event processing by about 50% compared with the time required for general methods to do the same; in addition, it reduced the impact of the event data on the event processing time to about 30%.

Unit Root Test를 기반으로 한 장기 시계열 데이터의 Non-Stationary 발생에 따른 구조 변화 검정 및 시각화 연구 (A Study on the Test and Visualization of Change in Structures Associated with the Occurrence of Non-Stationary of Long-Term Time Series Data Based on Unit Root Test)

  • 유재성;주재걸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권7호
    • /
    • pp.289-302
    • /
    • 2019
  • 시계열의 구조 변화란, 전체 시계열 자료를 구성하는 기간에서 관측치들의 분포가 상대적으로 안정적이다가, 특정 시점에서 분포 특성의 급격한 변화를 보이는 것을 의미한다. 비정상(non-stationary) 장기 시계열 안에서도, 단기적인 추세의 변화가 일시적인 것인지, 아니면 구조적으로 변한 것인지를 적시에 판단하는 것은 중요하다. 이는 시계열 추세의 변화를 상시 감지하여, 변화에 맞는 적정한 대응을 할 필요가 있기 때문이다. 본 연구에서는 단위근 검정법을 기반으로 한 검정 결과를 시각화함으로써, 의사결정자가 시계열의 구조 변화를 손쉽게 파악할 수 있는 방안을 제시하였다. 특히 시계열을 분할한 후 검정하는 방법을 통해, 장기 시계열일 때에도 단기 구조 변화를 파악할 수 있도록 하였다.

ProphetNet 모델을 활용한 시계열 데이터의 열화 패턴 기반 Health Index 연구 (A Study on the Health Index Based on Degradation Patterns in Time Series Data Using ProphetNet Model)

  • 원선주;김용수
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.123-138
    • /
    • 2023
  • The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.

다중 유사 시계열 모델링 방법을 통한 예측정확도 개선에 관한 연구 (A Study on Improving Prediction Accuracy by Modeling Multiple Similar Time Series)

  • 조영희;이계성
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.137-143
    • /
    • 2010
  • 본 연구에서는 시계열 자료처리를 통해 예측정확도를 개선시키는 방안에 대해 연구하였다. 단일 예측 모형의 단점을 개선하기 위해 유사한 시계열 자료를 선정하여 이들로부터 모델을 유도하였다. 이 모델로부터 유효 규칙을 생성해내 향후 자료의 변화를 예측하였다. 실험을 통해 예측정확도에 있어 유의한 수준의 개선효과가 있었음을 확인하였다. 예측모델 구성을 위해 고정구간과 가변구간을 두고 모델링하여 고정구간, 창이동, 누적구간 방식으로 구분하여 예측정확도를 측정하였다. 이중 누적구간 방식이 가장 정확도가 높게 나왔다.

DETECTING VARIABILITY IN ASTRONOMICAL TIME SERIES DATA: APPLICATIONS OF CLUSTERING METHODS IN CLOUD COMPUTING ENVIRONMENTS

  • 신민수;변용익;장서원;김대원;김명진;이동욱;함재균;정용환;윤준연;곽재혁;김주현
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.131.1-131.1
    • /
    • 2011
  • We present applications of clustering methods to detect variability in massive astronomical time series data. Focusing on variability of bright stars, we use clustering methods to separate possible variable sources from other time series data, which include intrinsically non-variable sources and data with common systematic patterns. We already finished the analysis of the Northern Sky Variability Survey data, which include about 16 million light curves, and present candidate variable sources with their association to other data at different wavelengths. We also apply our clustering method to the light curves of bright objects in the SuperWASP Data Release 1. For the analysis of the SuperWASP data, we exploit a elastically configurable Cloud computing environments that the KISTI Supercomputing Center is deploying. Two quite different configurations are incorporated in our Cloud computing test bed. One system uses the Hadoop distributed processing with its distributed file system, using distributed processing with data locality condition. Another one adopts the Condor and the Lustre network file system. We present test results, considering performance of processing a large number of light curves, and finding clusters of variable and non-variable objects.

  • PDF

태양광 발전량 데이터의 시계열 모델 적용을 위한 결측치 보간 방법 연구 (A Research for Imputation Method of Photovoltaic Power Missing Data to Apply Time Series Models)

  • 정하영;홍석훈;전재성;임수창;김종찬;박철영
    • 한국멀티미디어학회논문지
    • /
    • 제24권9호
    • /
    • pp.1251-1260
    • /
    • 2021
  • This paper discusses missing data processing using simple moving average (SMA) and kalman filter. Also SMA and kalman predictive value are made a comparative study. Time series analysis is a generally method to deals with time series data in photovoltaic field. Photovoltaic system records data irregularly whenever the power value changes. Irregularly recorded data must be transferred into a consistent format to get accurate results. Missing data results from the process having same intervals. For the reason, it was imputed using SMA and kalman filter. The kalman filter has better performance to observed data than SMA. SMA graph is stepped line graph and kalman filter graph is a smoothing line graph. MAPE of SMA prediction is 0.00737%, MAPE of kalman prediction is 0.00078%. But time complexity of SMA is O(N) and time complexity of kalman filter is O(D2) about D-dimensional object. Accordingly we suggest that you pick the best way considering computational power.

내용기반 음악정보 검색을 위한 선율의 시계열 데이터 변환을 이용한 주제선율색인 구성 (Construction of Theme Melody Index by Transforming Melody to Time-series Data for Content-based Music Information Retrieval)

  • 하진석;구경이;박재현;김유성
    • 정보처리학회논문지D
    • /
    • 제10D권3호
    • /
    • pp.547-558
    • /
    • 2003
  • 음악은 서로 다른 높이와 길이를 갖는 음표들을 주어진 박자 안에서 리듬성을 갖도록 나열한 패턴이기 때문에 음악의 선율정보는 시간의 흐름에 따라 정보 값을 갖는 시계열 데이터로 변환할 수 있다 따라서 본 연구에서는 음악의 특성을 유지하도록 선율정보를 정규화와 보정과정을 거쳐 시계열 데이터로 변환하고 유클리드 거리함수를 이용하여 선율정보간의 유사도를 계산하며, 유사성을 갖는 선율들을 클러스터링하여 각 클러스터의 대표성을 갖는 선율을 주제선율로서 추출한다. 그리고 추출된 주제선율로 다차원색인 기법인 M-tree를 이용하여 주제선율색인을 구성한다. 사용자 질의에 대한 검색과정에서도 색인 구성단계와 같은 과정으로 사용자 질의를 시계열 데이터로 변환하여 검색을 한다. 또한, 본 연구에서는 주제선율색인을 이용하여 내용기반 음악 검색을 실시하는 프로토타입 시스템을 개발하여 제안된 주제선율색인 구성기법의 실효성을 시험하였다. 실험결과에 따르면, 주제선율색인을 이용하면 원하는 음악 정보를 적은 공간을 사용하여 빠르고 정확하게 검색할 수 있음을 알 수 있다.

A Novel Framework Based on CNN-LSTM Neural Network for Prediction of Missing Values in Electricity Consumption Time-Series Datasets

  • Hussain, Syed Nazir;Aziz, Azlan Abd;Hossen, Md. Jakir;Aziz, Nor Azlina Ab;Murthy, G. Ramana;Mustakim, Fajaruddin Bin
    • Journal of Information Processing Systems
    • /
    • 제18권1호
    • /
    • pp.115-129
    • /
    • 2022
  • Adopting Internet of Things (IoT)-based technologies in smart homes helps users analyze home appliances electricity consumption for better overall cost monitoring. The IoT application like smart home system (SHS) could suffer from large missing values gaps due to several factors such as security attacks, sensor faults, or connection errors. In this paper, a novel framework has been proposed to predict large gaps of missing values from the SHS home appliances electricity consumption time-series datasets. The framework follows a series of steps to detect, predict and reconstruct the input time-series datasets of missing values. A hybrid convolutional neural network-long short term memory (CNN-LSTM) neural network used to forecast large missing values gaps. A comparative experiment has been conducted to evaluate the performance of hybrid CNN-LSTM with its single variant CNN and LSTM in forecasting missing values. The experimental results indicate a performance superiority of the CNN-LSTM model over the single CNN and LSTM neural networks.

Mean-VaR Portfolio: An Empirical Analysis of Price Forecasting of the Shanghai and Shenzhen Stock Markets

  • Liu, Ximei;Latif, Zahid;Xiong, Daoqi;Saddozai, Sehrish Khan;Wara, Kaif Ul
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1201-1210
    • /
    • 2019
  • Stock price is characterized as being mutable, non-linear and stochastic. These key characteristics are known to have a direct influence on the stock markets globally. Given that the stock price data often contain both linear and non-linear patterns, no single model can be adequate in modelling and predicting time series data. The autoregressive integrated moving average (ARIMA) model cannot deal with non-linear relationships, however, it provides an accurate and effective way to process autocorrelation and non-stationary data in time series forecasting. On the other hand, the neural network provides an effective prediction of non-linear sequences. As a result, in this study, we used a hybrid ARIMA and neural network model to forecast the monthly closing price of the Shanghai composite index and Shenzhen component index.