• 제목/요약/키워드: Time Reversal Process

검색결과 44건 처리시간 0.018초

Time Reversa1 Reconstruction of Ultrasonic Waves in Anisotropic Media

  • Jeong, Hyun-Jo
    • 비파괴검사학회지
    • /
    • 제28권1호
    • /
    • pp.54-58
    • /
    • 2008
  • Time reversal (TR) of body waves in fluids and isotropic solids has been used in many applications including ultrasonic NDE. However, the study of the TR method for anisotropic materials is not well established. In this paper, the full reconstruction of the input signal is investigated for anisotropic media using an analytical formulation, called a modular Gaussian beam (MGB) model. The time reversal operation of this model in the frequency domain is done by taking the complex conjugate of the Gaussian amplitude and phase received at the TR mirror position. A narrowband reference signal having a particular frequency and number of cycles is then multiplied and the whole signal is inverse Fourier transformed. The original input signal is seen to be fully restored by the TR process of MGB model and this model can be more generalized to simulate the spatial and temporal focusing effects due to TR process in anisotropic materials.

유도초음파의 시간.역전 현상을 활용한 구조손상 진단기법 (Structural Damage Diagnosis Method by Using the Time-Reversal Property of Guided Waves)

  • 이우식;최정식
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.64-74
    • /
    • 2010
  • This paper proposes a new TR-based baseline-free SHM technique in which the time-reversal (TR) property of the guided Lamb waves is utilized. The new TR-based SHM technique has two distinct features when compared with the other TR-based SHM techniques: (1) The backward TR process commonly conducted by the measurement is replaced by the computation-based process; (2) In place of the comparison method, the TOF information of the damage signal extracted from the reconstructed signal is used for the damage diagnosis in conjunction with the imaging method which enables us to represent the damage as an image. The proposed TR-based SHM technique is then validated through the damage diagnosis experiment for an aluminum plate with a damage at different locations.

Time Delay Focusing of Ultrasonic Array Transducers on a Defect Using the Concept of a Time Reversal Process

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Lee, Chung-Hoon;Jun, Ghi-Chan
    • 비파괴검사학회지
    • /
    • 제29권6호
    • /
    • pp.550-556
    • /
    • 2009
  • In an application of a time reversal(TR) focusing of array transducer on a defect inside the test material, we employ a new time delay focusing technique based the TR process. In order to realize this idea, a multi-channel ultrasonic system is constructed capable of applying necessary time delays to each channel. The TR-based focusing procedure first measures the backscattered signals after firing one of the array elements. A phase slope method is then used to determine the time-of-flights of the backscattered signals received by all elements of the array. These time delays are used to adjust the time of excitation of the elements for transmission focusing on the defect. In addition to the TR focusing, the classical phased array focusing is also considered for comparison. Experimental results show that the TR-based time delay focusing produces much stronger backscattered signals than the phased array focusing, demonstrating the enhanced capability of the TR focusing.

On time reversal-based signal enhancement for active lamb wave-based damage identification

  • Wang, Qiang;Yuan, Shenfang;Hong, Ming;Su, Zhongqing
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1463-1479
    • /
    • 2015
  • Lamb waves have been a promising candidate for quantitative damage identification for various engineering structures, taking advantage of their superb capabilities of traveling for long distances with fast propagation and low attenuation. However, the application of Lamb waves in damage identification so far has been hampered by the fact that the characteristic signals associated with defects are generally weaker compared with those arising from boundary reflections, mode conversions and environmental noises, making it a tough task to achieve satisfactory damage identification from the time series. With awareness of this challenge, this paper proposes a time reversal-based technique to enhance the strength of damage-scattered signals, which has been previously applied to bulk wave-based damage detection successfully. The investigation includes (i) an analysis of Lamb wave propagation in a plate, generated by PZT patches mounted on the structure; (ii) an introduction of the time reversal theory dedicated for waveform reconstruction with a narrow-band input; (iii) a process of enhancing damage-scattered signals based on time reversal focalization; and (iv) the experimental investigation of the proposed approach to enhance the damage identification on a composite plate. The results have demonstrated that signals scattered by delamination in the composite plate can be enhanced remarkably with the assistance of the proposed process, benefiting from which the damage in the plate is identified with ease and high precision.

SUBMICRON-RESOLUTION DOMAIN REVERSAL STUDY OF Co-BASED MULTILAYERS USING MAGNETO-OPTICAL MICROSCOPE MAGNETOMETER (MOMM)

  • Shin, Sung-Chul;Choe, Sug-Bong
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2000년도 International Symposium on Magnetics The 2000 Fall Conference
    • /
    • pp.121-146
    • /
    • 2000
  • A novel system of magneto-optical microscope magnetometer (MOMM), capable of simultaneous local problems of magnetic properties as well as real-time magnetic domain evolution imaging of ferromagnetic thin films with 400-nm spatial resolution, New findings in domain reveral dynamics of Co-based multilayers: The reversal ratio of V/R is a governing physical parameter. The activation volumes of wall-motion and nucleation processes are generally unequal. Submicron-scale local coercivity variation determines domain reversal dynamics. A thermally activated relaxation process during domain reversal is existed on the submicron-scale in realistic films. Local variation of magnetic properties should be considered for a realistic simulation. The fantastic capabilities of the MOMM can open many possibilities to broaden and deepen our understanding of domain reversal phenomena in ferromagnetic thin films.

  • PDF

Unequal Activation Volumes of Wall-motion and Nucleation Process in Co/Pt Multilayers

  • Cho, Yoon-Chul;Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • 제5권4호
    • /
    • pp.116-119
    • /
    • 2000
  • Magnetic field dependence of magnetization reversal in Co/Pt multilayers was quantitatively investigated. Serial samples of Co/Pt multilayers were prepared by dc-magnetron sputtering under various Ar pressures. Magnetization reversal was monitored by magnetization viscosity measurement and direct domain observation using a magneto-optical microscope system, and the wall-motion speed V and the nucleation rate R were determined using a domain reversal model based on time-resolved domain reversal patterns. Both V and R were found to be exponentially dependent on the applied reversing field. From the exponential dependencies, the activation volumes for wall motion and nucleation could be determined, based on a thermally activated relaxation model, and the wall-motion activation volume was found to be slightly larger than the nucleation activation volume.

  • PDF

구조물 건전성 모니터링을 위한 하이브리드 시간-반전기법 (Hybrid Time-Reversal Method for Structural Health Monitoring)

  • 이우식;김대환;전용주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.546-548
    • /
    • 2010
  • This paper proposes a new baseline-free TR-based SHM method in which the time-reversal (TR) property of the guided Lamb waves is utilized. The new TR-based SHM method has two distinct features when compared with the other existing SHM techniques: (1) The measurement- based backward TR process is replaced by the computation-based process (2) In place of the comparison method most commonly used for SHM, the TOF information of the damage signal extracted from the reconstructed signal is utilized for the damage diagnosis. For the damage diagnosis, the imaging method is adopted to efficiently detect damage by representing the damage as an image. The proposed TR-based SHM technique is then validated through the damage diagnosis experiment for an aluminum plate with a damage at different locations.

  • PDF

Lamb파의 시간-반전과정 및 이미지기법을 이용한 손상탐지 (Structural Damage Detection by Using the Time-Reversal Process of Lamb Waves and the Imaging Method)

  • 전용주;이우식
    • 한국철도학회논문집
    • /
    • 제14권4호
    • /
    • pp.320-326
    • /
    • 2011
  • 본 연구에서는 Lamb파에 대한 시간-반전과정과 이미지기법을 기반으로 하여 기준 데이터를 사용하지 않는 구조물 건전성 모니터링(SHM) 기술을 제안하였다. 제안된 기술이 갖는 주요 세가지 특징은 다음과 같다: (1) 제안된 기술에서는 귀환신호를 직접 손상진단에 사용하기 때문에 귀환신호와 초기 입력신호의 차이로부터 손상신호를 구할 필요가 없다; (2) 기존의 기술에서 널리 사용되는 형상비교법을 사용하지 않고 귀환신호에서 얻는 비시간 정보를 활용하는 이미지기법을 사용하였다; (3) 손상 이미지를 보다 뚜렷하게 얻기 위하여 이미지에 대한 개선된 수학적 정의를 사용하였다. 본 연구에서 제안한 SHM기술은 손상을 평판의 몇몇 위치에 부가한 경우에 대한 손상탐지 실험을 수행함으로써 검증하였다.

Simulation of Ultrasonic Beam Focusing on a Defect in Anisotropic, Inhomogeneous Media

  • Jeong, Hyun-Jo;Cho, Sung-Jong;Erdenetuya, Sharaa;Jung, Duck-Yong
    • 비파괴검사학회지
    • /
    • 제31권6호
    • /
    • pp.635-641
    • /
    • 2011
  • In ultrasonic testing of dissimilar metal welds, application of phased array technique in terms of incident beam focusing is not easy because of complicated material structures formed during the multi-pass welding process. Time reversal(TR) techniques can overcome some limitations of phased array since they are self-focusing that does not depend on the geometrical and physical properties of testing components. In this paper, we test the possibility of TR focusing on a defect within anisotropic, heterogeneous austenitic welds. A commercial simulation software is employed for TR focusing and imaging of a side-drilled hole. The performance of time reversed adaptive focal law is compared with those of calculated focal laws for both anisotropic and isotropic welds.

해수면에 의한 신호 응답 강도의 시변동성 특성이 적용된 벨홉 기반의 수중음향 통신 채널 모델링 및 수동 시역전 통신 응용 (Underwater Acoustic Communication Channel Modeling Regarding Magnitude Fluctuation Based on Ocean Surface Scattering Theory and BELLHOP Ray Model and Its Application to Passive Time-reversal Communication)

  • 김준석;고일석;이용식
    • 한국음향학회지
    • /
    • 제32권2호
    • /
    • pp.116-123
    • /
    • 2013
  • 본 논문은 시변 해수면을 생성하고 KA(Kirchhoff Approximation) 기반으로 산란계수를 시뮬레이션하여 결정론적 모델인 벨홉 임펄스 응답에 적용함으로써 시변동성 채널을 생성한다. 1D Pierson-Moskowitz 해수면 스펙트럼과 가우시안 상관 함수를 이용하여 일정한 속도로 변화하는 시 변동성 해수면을 사용하였다. 산란계수는 벨홉의 채널 임펄스 응답의 신호 응답 강도에 적용한다. 실제 실측 데이터에서 해수면 반사 성분을 분리하여 시 변동성 특성에 대한 도플러 파워 스펙트럼을 구하고, 해수면 산란계수 시뮬레이션의 결과와 비교하여 해수면에 사용된 가우시안 상관 함수의 상관 시간을 추정하였다. 최종적으로 생성된 시변동성 채널에 수동 시역전 통신 시나리오를 가정하고 기법을 적용하여 비트에러율 및 채널응답 상관계수 시뮬레이션을 수행하였다.