• Title/Summary/Keyword: Time Lag Approach

Search Result 73, Processing Time 0.029 seconds

Artificial Intelligence-Based Descriptive, Predictive, and Prescriptive Coating Weight Control Model for Continuous Galvanizing Line

  • Devraj Ranjan;G. R. Dineshkumar;Rajesh Pais;Mrityunjay Kumar Singh;Mohseen Kadarbhai;Biswajit Ghosh;Chaitanya Bhanu
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.228-234
    • /
    • 2024
  • Zinc wiping is a phenomenon used to control zinc-coating thickness on steel substrate during hot dip galvanizing by equipment called air knife. Uniformity of zinc coating weight in length and width profile along with surface quality are most critical quality parameters of galvanized steel. Deviation from tolerance level of coating thickness causes issues like overcoating (excess consumption of costly zinc) or undercoating leading to rejections due to non-compliance of customer requirement. Main contributor of deviation from target coating weight is dynamic change in air knives equipment setup when thickness, width, and type of substrate changes. Additionally, cold coating measurement gauge measure coating weight after solidification but are installed down the line from air knife resulting in delayed feedback. This study presents a coating weight control model (Galvantage) predicting critical air knife parameters air pressure, knife distance from strip and line speed for coating control. A reverse engineering approach is adopted to design a predictive, prescriptive, and descriptive model recommending air knife setups that estimate air knife distance and expected coating weight in real time. Implementation of this model eliminates feedback lag experienced due to location of coating gauge and achieving setup without trial-error by operator.

A Study on the Early Warning Model of Crude Oil Shipping Market Using Signal Approach (신호접근법에 의한 유조선 해운시장 위기 예측 연구)

  • Bong Keun Choi;Dong-Keun Ryoo
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.167-173
    • /
    • 2023
  • The manufacturing industry is the backbone of the Korean economy. Among them, the petrochemical industry is a strategic growth industry, which makes a profit through reexports based on eminent technology in South Korea which imports all of its crude oil. South Korea imports whole amount of crude oil, which is the raw material for many manufacturing industries, by sea transportation. Therefore, it must respond swiftly to a highly volatile tanker freight market. This study aimed to make an early warning model of crude oil shipping market using a signal approach. The crisis of crude oil shipping market is defined by BDTI. The overall leading index is made of 38 factors from macro economy, financial data, and shipping market data. Only leading correlation factors were chosen to be used for the overall leading index. The overall leading index had the highest correlation coefficient factor of 0.499 two months ago. It showed a significant correlation coefficient five months ago. The QPS value was 0.13, which was found to have high accuracy for crisis prediction. Furthermore, unlike other previous time series forecasting model studies, this study quantitatively approached the time lag between economic crisis and the crisis of the tanker ship market, providing workers and policy makers in the shipping industry with an framework for strategies that could effectively deal with the crisis.

Science and Technology Policy Studies, Society, and the State : An Analysis of a Co-evolution Among Social Issue, Governmental Policy, and Academic Research in Science and Technology (과학기술정책 연구와 사회, 정부 : 과학기술의 사회이슈, 정부정책, 학술연구의 공진화 분석)

  • Kwon, Ki-Seok;Jeong, Seohwa;Yi, Chan-Goo
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.1
    • /
    • pp.64-91
    • /
    • 2018
  • This study explores the interactive pattern among social issue, academic research, and governmental policy on science and technology during the last 20 years. In particular, we try understand wether the science and technology policy research and governmental policy meets social needs appropriately. In order to do this, we have collected text data from news articles, papers, and governmental documents. Based on these data, social network analysis and cluster analysis has been carried out. According to the results, we have found that science and technology policy researches tend to focus on fragmented technological innovation meeting urgent practical needs at the initial stage. However, recently, the main characteristics of science and technology policy research shows co-evolutionary patterns responding to society. Furthermore, time lag also has been observed in the process of interaction among the three bodies. Based on these results, we put forward some suggestions for upcoming researches in science and technology policy. Firstly, analysis levels are needed to be shifted from micro level to mezo or macro level. Secondly, more research efforts are required to be focused on policy process in science technology and its public management. Finally, we have to enhance the sensitiveness to social issues through studies on agenda setting in science and technology policy.

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

Exploratory Study on Factors Affecting Influencers' YouTube Channel Operation and Revenue Generation Based on the Grounded Theory Approach (근거이론 접근법을 이용한 인플루언서의 유튜브 채널 운영과 수익 창출에 미치는 영향요인에 관한 탐색 연구)

  • Kim, Young Lag;Park, Sang Hyeok;Cho, Jae Hee;Park, Jeong Sun
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.173-202
    • /
    • 2021
  • Purpose This study explored overall phenomena in context such as YouTube channel operation, strategy, and profit generation through interviews with two research participants who started their own businesses and are recognized as influencer on YouTube and analysis of viewer responses to uploaded contents. With the explosive growth of YouTube content provision and use, previous studies on YouTube are only being conducted individually on YouTube's content, influence, and content providers, so it is need to explore YouTube channel operations and the effect of revenue generation in context from an integrated perspective. Therefore, the purpose of this study is to present an integrated model that provides a specific process by contextually linking the factors and results influencing YouTube channel operation and revenue generation phenomena to individuals and companies who are trying to operate YouTube channels for the first time. Design/methodology/approach This study systematized and structured the overall phenomena in context such as YouTube channel operation, communication strategy, effect on revenue generation, and YouTube channel operation results by selecting interview subjects and collecting data through interviews, and analyzing viewer reactions (likes, comments, etc.). Due to the lack of previous studies exploring integrated phenomena, research analysis used Strauss & Corbin (1998)'s grounded theory approach, which presented inductive research methods to discover new theories by structuring concepts and categories based on detailed observations and information provided by interviewees. Findings The academic implication of this study is that while previous studies are conducted as individual studies on YouTube's content, influence, and content providers in the current situation where YouTube content provision and use are exploding, it integrally explores and presents an integrated model throughout the process. In addition, taking into account the lack of previous studies, it can be found in the aspect of using the grounded theory approach, an inductive theory approach that establishes a new theory. The practical implications can be found in that it presented practical directions to beginners who want to start operating YouTube channels by identifying operational preparations, communication strategies with viewers, and response management strategies.

Time series analysis for Korean COVID-19 confirmed cases: HAR-TP-T model approach (한국 COVID-19 확진자 수에 대한 시계열 분석: HAR-TP-T 모형 접근법)

  • Yu, SeongMin;Hwang, Eunju
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.239-254
    • /
    • 2021
  • This paper studies time series analysis with estimation and forecasting for Korean COVID-19 confirmed cases, based on the approach of a heterogeneous autoregressive (HAR) model with two-piece t (TP-T) distributed errors. We consider HAR-TP-T time series models and suggest a step-by-step method to estimate HAR coefficients as well as TP-T distribution parameters. In our proposed step-by-step estimation, the ordinary least squares method is utilized to estimate the HAR coefficients while the maximum likelihood estimation (MLE) method is adopted to estimate the TP-T error parameters. A simulation study on the step-by-step method is conducted and it shows a good performance. For the empirical analysis on the Korean COVID-19 confirmed cases, estimates in the HAR-TP-T models of order p = 2, 3, 4 are computed along with a couple of selected lags, which include the optimal lags chosen by minimizing the mean squares errors of the models. The estimation results by our proposed method and the solely MLE are compared with some criteria rules. Our proposed step-by-step method outperforms the MLE in two aspects: mean squares error of the HAR model and mean squares difference between the TP-T residuals and their densities. Moreover, forecasting for the Korean COVID-19 confirmed cases is discussed with the optimally selected HAR-TP-T model. Mean absolute percentage error of one-step ahead out-of-sample forecasts is evaluated as 0.0953% in the proposed model. We conclude that our proposed HAR-TP-T time series model with optimally selected lags and its step-by-step estimation provide an accurate forecasting performance for the Korean COVID-19 confirmed cases.

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.

Analysis of Hydraulic Characteristics of Two Solenoid-driven Injectors for CRDi System (2개 솔레노이드 구동방식별 CRDi용 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Lee, Jung-Hyup;Kim, Min-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.140-147
    • /
    • 2011
  • The injection nozzle of an electro-hydraulic injector for the common rail Diesel fuel injection system is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the slenoid actuator was considered as a prime movers in high pressure Diesel injector. Namely a solenoid-driven Diesel injector with different driving current types, as a general method driven by solenoid coil energy, has been applied with a purpose to develop the analysis model of the solenoid actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the solenoid-driven injector, the circuit model has been developed as a unified approach to mechanical modeling in this study. As this analytic results, we know the suction force and first order time lag for driving force can be endowed in solenoid-driven injector in controlling the injection rate. Also it can predict that the input current wave exerted on solenoid coil is the dominant factor which affects on the initial needle behavior of solenoid-driven injector than the hydraulic force generated by the constant injection pressure.

The Effect of Enhancers on the Penetration of Albuterol through Hairless Mouse Skin

  • Choi, Han-Gon;Rhee, Jong-Dal;Yu, Bong-Kyu;Kim, Jung-Ae;Kwak, Mi-Kyung;Woo, Jong-Soo;Oh, Dong-Hun;Han, Myo-Jung;Choi, Jun-Young;Piao, Mingguan;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.5
    • /
    • pp.321-329
    • /
    • 2006
  • Albuterol, a selective ${\beta}_2$-adrenergic receptor stimulant, has been introduced as a potent bronchodilator for patients with bronchial asthma, chronic obstructive bronchial disease, chronic bronchitis and pulmonary emphysema. The percutaneous permeation of albuterol sulfate was investigated in hairless mouse skin in vitro with and without pretreatment with enhancers. The enhancing effects of ethanol and various penetration enhancers such as terpenes, non-ionic surfactants, pyrrolidones, and fatty acids on the permeation of albuterol sulfate were evaluated using Franz diffusion cells. Among terpenes studied, 1,8-cineole was the most effective enhancer, which increased the permeability of albuterol sulfate approximately 33-fold compared with the control without enhancer pretrement, followed by d-limonene with enhancement ratio of 21.79. 2-Pyrrolidone-5-carboxylic acid increased the permeability of albuterol sulfate approximately 5.5-fold compared with the control. Other pyrrolidones tested showed only slight permeability enhancing effect with enhancement ratio less than 2.8. Nonionic surfactants showed moderate enhancing effects. Lauric acid increased the permeability of albuterol sulfate approximately 30-fold with decreasing the lag time from 2.85 to 0.64 hr. Oleic acid and linoleic acid showed enhancement ratio of 24.55 and 22.91, respectively. These findings would allow a more rational approach for designing formulations for the transdermal delivery of albuterol sulfate and similar drugs.

A Dynamic Map Partition for Load Balancing of MMORPG based on Virtual Area Information (MMORPG에서의 부하 분산을 위한 가상 영역 정보 기반 동적 지역 분할)

  • Kim Beob-Kyun;An Dong-Un;Chung Seung-Jong
    • The KIPS Transactions:PartA
    • /
    • v.13A no.3 s.100
    • /
    • pp.223-230
    • /
    • 2006
  • A MMORPG(Massively Multiplayer Online Role-Playing Game) is an online role-playing game in which a large number of players can interact with each other in the same world at the same time. Most of them require significant hardware requirements(e.g., servers and bandwidth), and dedicated support staff. Despite the efforts of developers, users often cite overpopulation, lag, and poor support as problems of games. In this paper, a dynamic load balancing method for MMORPGS is proposed. It tries to adapt to dynamic change of population by using dynamic map-partition method with VML(Virtual Map Layer) which consists of fields, sector groups, sectors, and cells. From the experimental results, our approach achieves about $23^{\sim}67%$ lower loads for each field server. By the modification to Virtual Area Layer, we can easily manage problems that come from changes of map data, resources' status, and users' behavior pattern.