• Title/Summary/Keyword: Time Domain Reflectometry

Search Result 204, Processing Time 0.025 seconds

Investigation of characteristic values in TDR waveform using SHapley Additive exPlanations (SHAP) for dielectric constant estimation during curing time

  • Won-Taek Hong;WooJin Han;Yong-Hoon Byun;Hyung-Koo Yoon
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • As materials cure, the internal electrical flow changes, leading to variations in the dielectric constant over time. This study aims to assess the impact of voltage values extracted from time domain reflectometry (TDR) waveforms, measured during the curing of materials, on predicting the dielectric constant. The experiments are conducted over a curing period ranging from 60 to 8640 minutes, with 30 TDR trials. From the measured waveforms, values of V0, V1, V2, Vf, and Δt are deduced. Additionally, curing time is included as an input variable. Groups A and B are distinguished based on the presence or absence of Δt, indicating a physical relationship between Δt and the dielectric constant. The dielectric constant is set as the output variable. The SHapley Additive exPlanations (SHAP) algorithm is applied to the compiled data. The results indicate that Δt and V1 are the most influential input variables in both Group-A and Group-B. The study also presents the distribution of SHAP values and interacts SHAP values to infer the interrelationships among the input variables. To validate the reliability of these findings, the partial dependence (PD) algorithm is applied to estimate the marginal effects of each input variable, with outcomes closely aligning with those of the SHAP algorithm. This research suggests that understanding the contributions and proportional relationships of each input variable can aid in interpreting the relationships among various material properties.

Low-Cost CAP-type TDR Exploration Techniques for Leak Detection (누수탐지를 위한 저비용 CAP형 TDR 탐사기법)

  • Kim, Jin Man;Choi, Bong Hyuck;Cho, Jin Woo;Cho, Won Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1479-1487
    • /
    • 2013
  • The river levee collapse and flood damages are dramatically increased due to the floods which caused by abnormal weather nowadays. The counterplan like TDR(Time Domain Reflectometry) river levee leaking exploration technique is needed to that levee failure causes of levee failure such as levee failure by penetration, piping, inadequate levee materials selection, poor compaction are almost 52% of the failure. This research practiced various comparing experiments of existing TDR(probe and tube types) and developing CAP type TDR to evaluate acrylic small CAP mould and low-cost TDR levee leaking monitoring system which was used probe type TDR. As the result, evaluated TDR system had 20cm critical exploration performance which was a leaking exploration performance, The functional ratio of TDR exploration sensitivity of dry density was sensitive more than 3 times than dry density, and weathered granite soil foundation water contents(w)-dielectric constant(${\epsilon}$) corelation formula was suggested to measure functional ratio on developing cap type TDR system.

Radio Frequency Circuit Module BGA(Ball Grid Array) (Radio Frequency 회로 모듈 BGA(Ball Grid Array) 패키지)

  • Kim, Dong-Young;Jung, Tae-Ho;Choi, Soon-Shin;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.8-18
    • /
    • 2000
  • We presented a BGA(Ball Grid Array) package for RF circuit modules and extracted its electrical parameters. As the frequency of RF system devices increases, the effect of its electrical parasitics in the wireless communication system requires new structure of RF circuit modules because of its needs to be considered of electrical performance for minimization and module mobility. RF circuit modules with BGA packages can provide some advantages such as minimization, shorter circuit routing, and noise improvement by reducing electrical noise affected to analog and digital mixed circuits, etc. We constructed a BGA package of ITS(Intelligent Transportation System) RF module and measured electrical parameters with a TDR(Time Domain Reflectometry) equipment and compared its electrical parasitic parameters with PCB RF circuits. With a BGA substrate of 3${\times}$3 input and output terminals, we have found that self capacitance of BGA solder ball is 68.6fF, and self inductance 146pH, whose values were reduced to 34% and 47% of the value of QFP package structure. S11 parameter measurement with a HP4396B Network Analyzer showed the resonance frequency of 1.55GHz and the loss of 0.26dB. Routing length of the substrate was reduced to 39.8mm. Thus, we may improve electrical performance when we use BGA package structures in the design of RF circuit modules.

  • PDF

Measurement of Distributed Temperature and Strain Using Raman OTDR with a Fiber Line Including Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서가 있는 광섬유 라인에 라만 OTDR을 이용한 분포 온도 및 변형률 측정 가능성에 대한 연구)

  • Kwon, Il-Bum;Byeon, Jong-Hyun;Jeon, Min-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.443-450
    • /
    • 2016
  • In this study, we propose a novel fiber optic sensor to show the measurement feasibility of distributed temperature and strains in a single sensing fiber line. Distributed temperature can be measured using optical time domain reflectometry (OTDR) with a Raman anti-Stokes light in the sensing fiber line. Moreover, the strain can be measured by fiber Bragg gratings (FBGs) in the same sensing fiber line. The anti-Stokes Raman back-scattering lights from both ends of the sensing fiber, which consists of a 4 km single mode optical fiber, are acquired and inserted into a newly formulated equation to calculate the temperature. Furthermore, the center wavelengths from the FBGs in the sensing fiber are detected by an optical spectrum analyzer; these are converted to strain values. The initial wavelengths of the FBGs are selected to avoid a cross-talk with the wavelength of the Raman pulsed pump light. Wavelength shifts from a tension test were found to be 0.1 nm, 0.17 nm, 0.29 nm, and 0.00 nm, with corresponding strain values of $85.76{\mu}{\epsilon}$, $145.55{\mu}{\epsilon}$, $247.86{\mu}{\epsilon}$, and $0.00{\mu}{\epsilon}$, respectively. In addition, a 50 m portion of the sensing fiber from $30^{\circ}C$ to $70^{\circ}C$ at $10^{\circ}C$ intervals was used to measure the distributed temperature. In all tests, the temperature measurement accuracy of the proposed sensor was less than $0.50^{\circ}C$.

Measurement of Soil Water Content by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양함수량의 측정)

  • Park, Jae-Hyeon;Yun, Seong-Yong;Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.587-595
    • /
    • 1997
  • Experimental study on unsaturated flow in the soil is important to understand the characteristics of the water flow. Measurement of unsteady-state water movement using the traditional equipment (e.g. tensiometer) has a problem that requires relatively a long response time. In this study a quick measurement method of soil water flow using TDR is introduced. TDR consists of an electronic function generator which generates a squared wave, and an oscilloscope which catches the reflected wave. The wave is reflected where both the impedance of the transmission line and the propagation velocity are changed. The water content can be obtained from the travel time measured by means of TDR because the dielectric constant is affected by the change of soil water content. From the result of TDR calibration. TDR measurement error for the oven dried soil was found to be less than 3.5%. This supports that TDR is a viable technique to measure the unsteady-state water movement.

  • PDF

Displacement Measurement by Multiplexed Optical Loss -based Fiber Optic Sensor (다중화된 광 손실형 광섬유 센서에 의한 변위의 측정)

  • 권일범;김치엽;유정애
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.556-565
    • /
    • 2003
  • Light losses in optical fibers are investigated by a fiber optic OTDR (Optical Time Domain Reflectometry) sensor system to develop fiber optic probes for structural displacement measurement. The displacement sensitivity was determined by the measurements of fiber-bending loss according to the gage length changes of the displacement sensor. The fiber optic displacement probe was manufactured to verify the feasibility of the structural displacement measurement.

  • PDF

A study on the test methods for detection device of cable fault type and location (케이블 고장 종류, 위치 검출장치 시험 방법에 관한 연구)

  • Oh, Hun;Jeon, Jeong-Chay;Kim, Taek-Hee;Yoo, Jae-Geun;Ko, Bong-Woon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.7-8
    • /
    • 2015
  • TDR(Time Domain Reflectometry) technology can detect cable fault type and location. This paper is to evaluate the performance of the cable TDR device. Therefore, this paper describe methods and elements of tests.

  • PDF

Optical frequency domain reflectometry based on Wavelength swept mode locked fiber laser (Wavelength Swept 모드 록킹된 광섬유 레이저를 이용한 광주파수 영역에서 반사계)

  • 오명숙;박희수;김병윤
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.204-205
    • /
    • 2003
  • We demonstrate a novel OFDR system with compactness and short measurement time based on the use of a wavelength-swept mode-locked fiber laser. The optical source uses an intra-cavity tunable Fabry-Perot filter as a tuning element. The fiber laser sweeps 20 nm in less than 10 ms. Spatial resolution of 100 fm and total measurement range of several centimeters are demonstrate

  • PDF

Signal Integrity Analysis of High Speed Interconnects In PCB Embedded with EBG Structures

  • Sindhadevi, M.;Kanagasabai, Malathi;Arun, Henridass;Shrivastav, A. K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.175-183
    • /
    • 2016
  • This paper brings out a novel method for reducing Near end and Far end Crosstalk using Electromagnetic Band Gap structures (EBG) in High Speed RF transmission lines. This work becomes useful in high speed closely spaced Printed Circuit Board (PCB) traces connected to multi core processors. By using this method, reduction of −40dB in Near-End Crosstalk (NEXT) and −60 dB in Far End Crosstalk (FEXT) is achieved. The results are validated through experimental measurements. Time domain analysis is performed to validate the signal integrity property of coupled transmission lines.

Accuracy Improvement of Time Domain Impedance Measurement Using Error Calibration Method (오차 보정 방법을 이용한 시간 영역 임피던스 측정의 정확도 개선)

  • Roh, Hyun-Seung;Cui, Chenglin;Kim, Yang-Seok;Chae, Jang-Bum;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1315-1322
    • /
    • 2012
  • Frequency domain reflectometry diagnoses faults on electric cables by measuring the cable impedance. Time domain impedance measurement technique using an oscilloscope instead of a network analyzer is widely used for electric power cables under harsh environment or powered condition. However, impedance measurement in the time domain shows inaccuracy as the frequency increases due to several parasitic impedances, which results in the poor resolution of fault points. This paper presents the accuracy enhancement technique using a module with an operational amplifier and an error calibration method in the time domain impedance measurements, which is confirmed by comparing the cable impedance measurement results.