• Title/Summary/Keyword: Time Domain Beamforming

Search Result 23, Processing Time 0.016 seconds

Position Estimation of Underwater Acoustic Source Using Pulsed CW Signal (Pulsed CW 신호를 사용하는 수중 음원의 위치 추정을 위한 시간지연차 추정법)

  • 최영근;손권;도경철;김기만
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.514-520
    • /
    • 2004
  • There are many techniques for underwater source localization. These are the methods based on TDOA (Time Difference Of Arrival) estimation. beamforming techniques and high resolution techniques, etc. In this Paper we estimate the underwater source position using MCPSP (Modified Cross Power Spectrum Phase) function that is calculated on frequency domain using sensors of small number. However, the performances of the localizing method based on MCPSP function drops greatly in the case of CW (Continuous Wave) signal . In this Paper we proposed the TDOA estimation method for pulsed CW signal. In the Proposed method we composed of new segment including a edge of ping. This segment was computed by short-time energy detection. With theoretical representation the performances of the proposed method were analyzed under various environment.

A Time-Domain GSC Algorithm Based on Wavelet Filter (웨이브렛 필터 기반의 시간 영역 GSC 알고리즘)

  • Hong, Chun-Pyo;Whang, Seok-Yoon;Kim, Chang-Hoon;Yang, Jeen-Mo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.948-956
    • /
    • 2010
  • Griffiths and Jim has proposed a beamforming structure called GSC algorithm, in which antenna elements are grouped into main-channel and sub-channel, and sidelobe is reduced by applying adaptive LMS algorithm. This paper proposes WLMS-GSC algorithm where the Haar and Daubechies wavelet filters are used to process array antenna output, instead of using subtractor filter. We analyze characteristics of the proposed WLMS-GSC algorithm. The WLMS-GSC has characteristic of reducing the computational requirement one-half compared to the LMS-GSC algorithm. In addition, we obtain MSE characteristics and adaptive beampattern of WLMS-GSC algorithm, and compared with the performance of LMS-GSC algorithm. The simulation results show that the WLMS-GSC algorithm proposed in this paper gives better or almost the same performance, compared to the LMS-GSC algorithm. In addition, the newly proposed structure has advantage of low computational requirements.

Beamforming Method for Target Range Estimation Using Near Field Shading Function (근거리 쉐이딩 함수를 이용한 표적 거리 추정 빔형성 기법)

  • Choi, Joo-Pyoung;Lee, Won-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.350-356
    • /
    • 2008
  • In this paper, we propose shading functions to the appropriate focused beamforming for near-field target estimation. This near field shading functions are based on Chebychev and Manning windows. In order to obtain the optimum sensor weighting values with the help of the proposed shading technique, we assume that the sensor positions associated to the non-uniformly distributed array are precisely known. We calculate a series of sensor weighting values from the FFT operation of given shading functions in time domain. By applying the shading weights on the sensor array, we can see that the level of sidelobe becomes diminished and the performance of estimating range and azimuth gets improved. In addition, we propose a non-uniform structure in terms of frequency bands, which may minimize the attenuation of incoming signals.