• Title/Summary/Keyword: Time Determination

Search Result 2,982, Processing Time 0.041 seconds

Angles-Only Initial Orbit Determination of Low Earth Orbit (LEO) Satellites Using Real Observational Data

  • Hwang, Hyewon;Park, Sang-Young;Lee, Eunji
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.187-197
    • /
    • 2019
  • The Optical Wide-field patroL-Network (OWL-Net) is a Korean optical space surveillance system used to track and monitor objects in space. In this study, the characteristics of four Initial Orbit Determination (IOD) methods were analyzed using artificial observational data from Low Earth Orbit satellites, and an appropriate IOD method was selected for use as the initial value of Precise Orbit Determination using OWL-Net data. Various simulations were performed according to the properties of observational data, such as noise level and observational time interval, to confirm the characteristics of the IOD methods. The IOD results produced via the OWL-Net observational data were then compared with Two Line Elements data to verify the accuracy of each IOD method. This paper, thus, suggests the best method for IOD, according to the properties of angles-only data, for use even when the ephemeris of a satellite is unknown.

A Preliminary Study of Near Real-time Precision Satellite Orbit Determination (준 실시간 정밀 위성궤도결정을 위한 이론적 고찰)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.693-700
    • /
    • 2009
  • For real-time precise GPS data processing such as a long baseline network RTK (Real-Time Kinematic) survey, PPP (Precise Point Positioning) and monitoring of ionospheric/tropospheric delays, it is necessary to guarantee accuracy comparable to IGS (International GNSS Service) precise orbit with no latency. As a preliminary study for determining near real-time satellite orbits, the general procedures of satellite orbit determination, especially the dynamic approach, were studied. In addition, the transformation between terrestrial and inertial reference frames was tested to integrate acceleration. The IAU 1976/1980 precession/nutation model showed a consistency of 0.05 mas with IAU 2000A model. Since the IAU 2000A model has a large number of nutation components, it took more time to compute the transformation matrix. The classical method with IAU 2000A model was two times faster than the NRO (non-rotating origin) approach, while there is no practical difference between two transformation matrices.

Location Determination System for Transport Path Optimization of Block Transporter (블록트랜스포터 운송경로 최적화를 위한 위치 측위 시스템)

  • Park, Jin-Gwan;Oh, Joo-Seong;Lee, Seong Ro;Jeong, Min-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.589-596
    • /
    • 2014
  • Block Transporter should be optimized transportation path, otherwise it brings about lot of logistics costs and production delays. Block Transporter location must be checked in real time for optimization of transportation path. In this paper we implement real-time location determination using mobile RFID for location of Block Transporter. Mobile RFID reader mounted on a smartphone is recognize Mobile RFID Tag attached in the Transporter. Then, Smartphone is store information of every Transporter name and load and etc. Finally, Smartphone is transmit information(Mobile RFID Tag information, Transporter information, location determination information used AP and GPS) to the server. As a result, We can optimize or modify transportation path of Block Transporter in real-time using information transmitted to the server.

Precision Assessment of Near Real Time Precise Orbit Determination for Low Earth Orbiter

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • The precise orbit determination (POD) of low earth orbiter (LEO) has complied with its required positioning accuracy by the double-differencing of observations between International GNSS Service (IGS) and LEO to eliminate the common clock error of the global positioning system (GPS) satellites and receiver. Using this method, we also have achieved the 1 m positioning accuracy of Korea Multi-Purpose Satellite (KOMPSAT)-2. However double-differencing POD has huge load of processing the global network of lots of ground stations because LEO turns around the Earth with rapid velocity. And both the centimeter accuracy and the near real time (NRT) processing have been needed in the LEO POD applications--atmospheric sounding or urgent image processing--as well as the surveying. An alternative to differential GPS for high accuracy NRT POD is precise point positioning (PPP) to use measurements from one satellite receiver only, to replace the broadcast navigation message with precise post processed values from IGS, and to have phase measurements of dual frequency GPS receiver. PPP can obtain positioning accuracy comparable to that of differential positioning. KOMPSAT-5 has a precise dual frequency GPS flight receiver (integrated GPS and occultation receiver, IGOR) to satisfy the accuracy requirements of 20 cm positioning accuracy for highly precise synthetic aperture radar image processing and to collect GPS radio occultation measurements for atmospheric sounding. In this paper we obtained about 3-5 cm positioning accuracies using the real GPS data of the Gravity Recover and Climate Experiment (GRACE) satellites loaded the Blackjack receiver, a predecessor of IGOR. And it is important to reduce the latency of orbit determination processing in the NRT POD. This latency is determined as the volume of GPS measurements. Thus changing the sampling intervals, we show their latency to able to reduce without the precision degradation as the assessment of their precision.

Trends of Initial Orbit Determination Accuracy for Time Interval Change Between Three Pairs of Measurement Datas (Gauss, Laplace 예비궤도 결정법의 시간간격에 대한 정밀도 변화 특성 분석)

  • Hwang, Ok-Jun;Jo, Jung-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.529-546
    • /
    • 2009
  • Gauss and Laplace methods for initial orbit determination (IOD) are classical orbit determination tools and have been used very efficiently in optical satellite surveillance system. Several studies related to these two methods have been released until now. In this study, we found that the trends of IOD accuracy for different time interval between three pairs of measurement datas show unexpected results. Therefore, we checked the possible cause of these differences. In order to check various orbit types, we used most of satellite data which is able to obtain. To check the characteristics of methodology-only, we used simulated observation data. And we used real observation data for specific satellites to check the characteristics appeared when we applyed these methods to optical satellite surveillance system. As a result, we found that trends of IOD accuracy for time interval could be different because of satellite position observed.

A Deep Space Orbit Determination Software: Overview and Event Prediction Capability

  • Kim, Youngkwang;Park, Sang-Young;Lee, Eunji;Kim, Minsik
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.139-151
    • /
    • 2017
  • This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for high-fidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.

Real Time On-board Orbit Determination Performance Analysis of Low Earth Orbit Satellites (저궤도 위성의 실시간 On-board 궤도 결정 성능 분석)

  • Kim, Eun-Hyouek;Koh, Dong-Wook;Chung, Young-Suk;Park, Sung-Baek;Jin, Hyeun-Pil;Lee, Hyun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • In this paper, a real time on-board orbit determination method using the extended kalman filter is suggested and its performance is analyzed in the environment of the orbit. Considering the limited on-board resources, the $J_2$ orbit propagate model and the GPS navigation solution are used for on-board orbit determination. The analysis result of the on-board orbit determination method implemented in DubaiSat-2 showed that position and velocity error are improved from 70.26 m to 26.25 m and from 3.6 m/s to 0.044 m/s, respectively when abnormal excursion errors is removed in the GPS navigation solution.

The Learning Satisfaction in Corporate E-learning based on Self-Directed Learning and Self-Determination (자기결정성과 자기주도학습에 의한 기업 이러닝이 학습 만족도에 미치는 영향)

  • Namgung, Seungeun;Kim, Sunggun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.1
    • /
    • pp.125-138
    • /
    • 2022
  • Companies want organizational members who take e-learning courses to enjoy the advantages of transcending time and space that e-learning has, but also want what they have learned to help the organization, the work they perform, or their future careers. In addition, while enjoying the effect of reducing education costs compared to offline education through e-learning, it is expected that executives and employees will apply the knowledge and skills learned to the field and perform tasks to achieve results. As COVID-19 continues, many education programs that have been conducted offline at corporate sites have been converted to e-learning, with a larger number of e-learning operations than in the past. This study was conducted based on the perception that learners' learning satisfaction is important for the successful operation of e-learning education, and that learners' own self-directed learning ability and self-determination are important as well as corporate efforts. As a result of the study, hypotheses 1-1, 1-2, 1-3-1, and 1-3-2 that the better the self-determination (autonomy, competence, full-time support, and peer support) is, the higher the learning satisfaction will be. Both Hypothesis 2-1 and Hypothesis 2-2 were adopted that the better self-directed learning (subjectivity, execution ability) is, the higher the learning satisfaction will increase. In conclusion, it is necessary to properly introduce the concepts of self-determination and self-directed learning in corporate education while operating with the corporate education system.

A Study on Development based on ToA Method of Location Determination System in Indoor (ToA 기반 실내 위치측위 시스템 개발에 관한 연구)

  • Lee, Doo-Yong;Piao, Xue-Hua;Song, Young-Keun;Jang, Jung-Hwan;Jho, Yong-Chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.99-105
    • /
    • 2011
  • Location-Based Service(LBS) is a service that provides a variety of convenience in life using location information that can be obtained by mobile communication network or satellite signal. In order to provide LBS precisely and efficiently, we have to need technologies such as location determination technology, platform technology and server technology first. In this study, we studied on how we can reduce the error on location determination of objects such people and things. Fingerprint location determination method was applied to this study because it can be used at current wireless communication infrastructure and less influenced by a variety of noisy environment than other location determination methods. We used the time of arrival(ToA) method in fingerprint location determination method. In order to confirm the performance of suggested method, we developed location determination test program with LAbVIEW 2010 and performed the test. According to indoor test results, the suggested method reduced the distance error by 24%, 34% and 19% respectively at indoor environment compared with deterministic kWNN and Rice Gaussian fingerprint methods.

A Design and Implementation of Security Image Information Search Service System using Location Information Based RSSI of ZigBee (ZigBee의 RSSI 위치정보기반 보안 영상정보 검색 시스템 설계 및 구현)

  • Kim, Myung-Hwan;Chung, Yeong-Jee
    • Journal of Information Technology Services
    • /
    • v.10 no.4
    • /
    • pp.243-258
    • /
    • 2011
  • With increasing interest in ubiquitous computing technology, an infrastructure for the short-distance wireless communication has been extended socially, bringing spotlight to the security system using the image or location. In case of existing security system, there have been issues such as the occurrences of blind spots, difficulty in recognizing multiple objects and storing of the unspecified objects. In order to solve this issue, zone-based location-estimation search system for the image have been suggested as an alternative based on the real-time location determination technology combined with image. This paper intends to suggest the search service for the image zone-based location-estimation. For this, it proposed the location determination algorism using IEEE 802.15.4/ZigBee's RSSI and for real-time image service, the RTP/RTCP protocol was applied. In order to combine the location and image, at the event of the entry of the specified target, the record of the time for image and the time of occurrence of the event on a global time standard, it has devised a time stamp, applying XML based meta data formation method based on the media's feature data based in connection with the location based data for the events of the object. Using the proposed meta data, the service mode which can search for the image from the point in time when the entry of the specified target was proposed.