• Title/Summary/Keyword: Time Delay System

Search Result 2,726, Processing Time 0.029 seconds

H Sampled-Data Control of LPV Systems with Time-varying Delay (시변지연을 가지는 LPV시스템의 H 샘플데이타 제어)

  • Liu, Yajuan;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.121-127
    • /
    • 2015
  • This paper considers the problem of sampled-data control for continuous linear parameter varying (LPV) systems. It is assumed that the sampling periods are arbitrarily varying but bounded. Based on the input delay approach, the sampled-data control LPV system is transformed into a continuous time-delay LPV system. Some less conservative stabilization results represented by LMI (Linear Matrix Inequality) are obtained by using the Lyapunov-Krasovskii functional method and the reciprocally combination approach. The proposed method for the designed gain matrix should guarantee asymptotic stability and a specified level of performance on the closed-loop hybrid system. Numerical examples are presented to demonstrate the effectiveness and the improvement of the proposed method.

Identification of continuous time-delay systems using the genetic algorithm

  • Hachino, Tomohiro;Yang, Zi-Jiang;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.1-6
    • /
    • 1993
  • This report proposes a novel method of identification of continuous time-delay systems from sampled input-output data. By the aid of a digital pre-filter, an approximated discrete-time estimation model is first derived, in which the system parameters remain in their original form and the time delay need not be an integral multiple of th sampling period. Then an identification method combining the common linear least squares(LS) method or the instrumental variable(IV) method with the genetic algorithm(GA) is proposed. That is, the time-delay is selected by the GA, and the system parameters are estimated by the LS or IV method. Furthermore, the proposed method is extended to the case of multi-input multi-output systems where the time-delays in the individual input channels may differ each other. Simulation resutls show that our method yields consistent estimates even in the presence of high measurement noises.

  • PDF

Time-Discretization of Non-Affine Nonlinear System with Delayed Input Using Taylor-Series

  • Park, Ji-Hyang;Chong, Kil-To;Kazantzis, Nikolaos;Parlos, Alexander G.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1297-1305
    • /
    • 2004
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sampled-data representation of a non-affine nonlinear system with constant input time-delay. The mathematical expressions of the discretization scheme are presented and the ability of the algorithm is tested for some of the examples. The proposed scheme provides a finite-dimensional representation for nonlinear systems with time-delay enabling existing controller design techniques to be applied to them. For all the case studies, various sampling rates and time-delay values are considered.

A Robust Longitudinal Landing Controller to Datalink Time Delay (데이터링크 시간지연에 강건한 종운동 착률제어기 설계)

  • Lee, Sang-Hyo;Rhee, Ihn-Seok;Kee, Chang-Don;Koo, Hueon-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • This paper deals with designing a ground-based longitudinal landing controller which is robust to datalink time delays. Time delays occur because forward velocity measurements are downlinked and the controller output commands are uplinked. An $H_{\infty}$ controller was designed by using the input/output decomposition where time delay is modeled as a first-order system with Pade approximation. Linear simulations show that the system tracks well the predefined path and is robust to the variation of time delay.

Predictive and Preventive Maintenance using Distributed Control on LonWorks/IP Network

  • Song, Ki-Won
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.6-11
    • /
    • 2006
  • The time delay in servo control on LonWorks/IP Virtual Device Network (VDN) is highly stochastic in nature. LonWorks/IP VDN induced time delay deteriorates the performance and stability of the real-time distributed control system and hinders an effective preventive and predictive maintenance. Especially in real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. In order to guarantee the stability and performance of the system for effective preventive and predictive maintenance, LonWorks/IP VDN induced time delay needs to be predicted and compensated for. In this paper position control simulation of DC servo motor using Zero Phase Error Tracking Controller (ZPETC) as a feedforward controller, and Internal Model Controllers (IMC) based on Smith predictor with disturbance observer as a feedback controller is performed. The validity of the proposed control scheme is demonstrated by comparing the IMC based on Smith predictor with disturbance observer.

Processing Time and Traffic Capacity Analysis for RFID System Using LBT-Random Searching Scheme (LBT-Random Searching 방식을 채용한 RFID 시스템의 트래픽 처리 시간 및 용량 해석)

  • Hwang, In-Kwan;Lim, Yeon-Jun;Pyo, Cheol-Sig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.822-829
    • /
    • 2005
  • In this paper, a processing time and trafnc capacity analysis algorithm for RFID system using LBT-Random Searching scheme is proposed. Service time, carrier sensing time, additional delay time required for contiguous frequency channel occupancy, and additional delay time required for the contiguous using the same frequency channel are considered and the processing delay and frequency channel capacity are analyzed for the steady state operation of the system. The simulation results showing maximum capacity of the system and explaining the accuracy of the algorithm are provided.

Processing Time and Traffic Capacity Analysis for RFID System Using LBT-Serial Searching Scheme (LBT-Serial Searching 방식을 채용한 RFID 시스템의 트래픽 처리 시간 및 용량 해석)

  • Hwang In-Kwan;Cho Hae-Keun;Pyo Cheol-Sig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.930-937
    • /
    • 2005
  • In this paper, a processing time and traffic capacity analysis algorithm for RFID system using LBT-serial searching scheme is proposed. Service time, carrier sensing time, additional delay time required for contiguous frequency channel occupancy, and additional delay time required for the contiguous using the same frequency channel are considered and the processing delay and frequency channel capacity are analyzed for the steady state operation of the system. The simulation results showing maximum capacity of the system and explaining the accuracy of the algorithm are provided.

Observer-Based Output Feedback Stochastic Stabilization for T-S Fuzzy Systems with Input Delay (입력지연을 갖는 T-S 퍼지 시스템의 관측기기반 출력궤환 확률적 안정화)

  • Lee, Sang In;Park, Jin Bae;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.298-303
    • /
    • 2004
  • This paper deals with a stochastic stabilization of observer-based output-feedback control Takagi-Sugeno (T-S) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized T-S fuzzy system is represented by a discrete-time T-S fuzzy system with jumping parameters. The stochastic stabilizability of the jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs). The usefulness of the proposed algorithm is also certificated by simulation of 2 degree of freedom helicopter model.

Time-Discretization of Nonlinear Systems with Time Delayed Output via Taylor Series

  • Yuanliang Zhang;Chong Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.950-960
    • /
    • 2006
  • An output time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via a digital computer. A new method for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed in this paper. This method is applied to the sampled-data representation of a nonlinear system with a constant output time-delay. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. In addition, 'hybrid' discretization schemes resulting from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. A performance of the proposed method is evaluated using two nonlinear systems with time-delay output.

A Realization of the Synchronization Module between the Up-Link and the Down-Link for the WiBro System (WiBro 시스템에서 상향링크와 하향링크 간 시간 동기 장치 구현)

  • Park Hyong-Rock;Kim Jae-Hyung;Hong Een-Kee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • In this paper, we propose the time synchronization module on fiber optic repeater to use optic line delay for obtaining time synchronization between up-link and down-link, in the 2.3 GHz WiBro network using TDD/OFDM (Time Division Duplex/Orthogonal Frequency Division Multiplexing) Generally, when we use fiber optic repeater to remove the shade area, it occurs transmission delay which is caused by optic transmission between RAS (Radio Access Station) and fiber optic repeater and inner delay of fiber optic repeater. Because the WiBro system is adopting a TOO method and there exists the difference of switching time which is caused by these delay between up-link and down-link, it occurs ISI (Inter Symbol Interference), ICI (Inter Carrier Interference). These interference results in the reduction of the coverage. And the inconsistency between Up-Link and Down-Link switching time maybe gives rise to the interruption of communication. In order to prevent these cases, we propose synchronization module using analog optic line delay as the one of synchronizing up-link and down-link. And we propose the consideration factor for the designing time synchronization module and the feature of optic line of analog method. The measurement result of optic line time synchronization module of structure proposed is as follows, the delay error of $0.5{\mu}g$ and the insertion loss value below maximum 4.5dB in range of $0{\sim}40{\mu}s$. These results fully meet the specification of WiBro System.

  • PDF